664 research outputs found

    Relative periodic orbits in point vortex systems

    Full text link
    We give a method to determine relative periodic orbits in point vortex systems: it consists mainly into perform a symplectic reduction on a fixed point submanifold in order to obtain a two-dimensional reduced phase space. The method is applied to point vortices systems on a sphere and on the plane, but works for other surfaces with isotropy (cylinder, ellipsoid, ...). The method permits also to determine some relative equilibria and heteroclinic cycles connecting these relative equilibria.Comment: 27 pages, 17 figure

    Bounds on the Sum Capacity of Synchronous Binary CDMA Channels

    Full text link
    In this paper, we obtain a family of lower bounds for the sum capacity of Code Division Multiple Access (CDMA) channels assuming binary inputs and binary signature codes in the presence of additive noise with an arbitrary distribution. The envelope of this family gives a relatively tight lower bound in terms of the number of users, spreading gain and the noise distribution. The derivation methods for the noiseless and the noisy channels are different but when the noise variance goes to zero, the noisy channel bound approaches the noiseless case. The behavior of the lower bound shows that for small noise power, the number of users can be much more than the spreading gain without any significant loss of information (overloaded CDMA). A conjectured upper bound is also derived under the usual assumption that the users send out equally likely binary bits in the presence of additive noise with an arbitrary distribution. As the noise level increases, and/or, the ratio of the number of users and the spreading gain increases, the conjectured upper bound approaches the lower bound. We have also derived asymptotic limits of our bounds that can be compared to a formula that Tanaka obtained using techniques from statistical physics; his bound is close to that of our conjectured upper bound for large scale systems.Comment: to be published in IEEE Transactions on Information Theor

    Rain, power laws, and advection

    Full text link
    Localized rain events have been found to follow power-law size and duration distributions over several decades, suggesting parallels between precipitation and seismic activity [O. Peters et al., PRL 88, 018701 (2002)]. Similar power laws are generated by treating rain as a passive tracer undergoing advection in a velocity field generated by a two-dimensional system of point vortices.Comment: 7 pages, 4 figure

    Enhanced tracer transport by the spiral defect chaos state of a convecting fluid

    Get PDF
    To understand how spatiotemporal chaos may modify material transport, we use direct numerical simulations of the three-dimensional Boussinesq equations and of an advection-diffusion equation to study the transport of a passive tracer by the spiral defect chaos state of a convecting fluid. The simulations show that the transport is diffusive and is enhanced by the spatiotemporal chaos. The enhancement in tracer diffusivity follows two regimes. For large Peclet numbers (that is, small molecular diffusivities of the tracer), we find that the enhancement is proportional to the Peclet number. For small Peclet numbers, the enhancement is proportional to the square root of the Peclet number. We explain the presence of these two regimes in terms of how the local transport depends on the local wave numbers of the convection rolls. For large Peclet numbers, we further find that defects cause the tracer diffusivity to be enhanced locally in the direction orthogonal to the local wave vector but suppressed in the direction of the local wave vector.Comment: 11 pages, 12 figure

    Measuring Topological Chaos

    Full text link
    The orbits of fluid particles in two dimensions effectively act as topological obstacles to material lines. A spacetime plot of the orbits of such particles can be regarded as a braid whose properties reflect the underlying dynamics. For a chaotic flow, the braid generated by the motion of three or more fluid particles is computed. A ``braiding exponent'' is then defined to characterize the complexity of the braid. This exponent is proportional to the usual Lyapunov exponent of the flow, associated with separation of nearby trajectories. Measuring chaos in this manner has several advantages, especially from the experimental viewpoint, since neither nearby trajectories nor derivatives of the velocity field are needed.Comment: 4 pages, 6 figures. RevTeX 4 with PSFrag macro

    Visualizing Structural Balance in Signed Networks

    Get PDF
    Network visualization has established as a key complement to network analysis since the large variety of existing network layouts are able to graphically highlight different properties of networks. However, signed networks, i.e., networks whose edges are labeled as friendly (positive) or antagonistic (negative), are target of few of such layouts and none, to our knowledge, is able to show structural balance, i.e., the tendency of cycles towards including an even number of negative edges, which is a well-known theory for studying friction and polarization. In this work we present Structural-balance-viz: a novel visualization method showing whether a connected signed network is balanced or not and, in the latter case, how close the network is to be balanced. Structural-balance-viz exploits spectral computations of the signed Laplacian matrix to place network's nodes in a Cartesian coordinate system resembling a balance (a scale). Moreover, it uses edge coloring and bundling to distinguish positive and negative interactions. The proposed visualization method has characteristics desirable in a variety of network analysis tasks: Structural-balance-viz is able to provide indications of balance/polarization of the whole network and of each node, to identify two factions of nodes on the basis of their polarization, and to show their cumulative characteristics. Moreover, the layout is reproducible and easy to compare. Structural-balance-viz is validated over synthetic-generated networks and applied to a real-world dataset about political debates confirming that it is able to provide meaningful interpretations

    Detection and tracking of discrete phenomena in sensor-network databases

    Get PDF
    This paper introduces a framework for Phenomena Detection and Tracking (PDT, for short) in sensor network databases. Examples of detectable phenomena include the propagation over time of a pollution cloud or an oil spill region. We provide a crisp definition of a phenomenon that takes into consideration both the strength and the time span of the phenomenon.We focus on discrete phenomena where sensor readings are drawn from a discrete set of values, e.g., item numbers or pollutant IDs, and we point out how our work can be extended to handle continuous phenomena. The challenge for the proposed PDT framework is to detect as much phenomena as possible, given the large number of sensors, the overall high arrival rates of sensor data, and the limited system resources. Our proposed PDT framework uses continuous SQL queries to detect and track phenomena. Execution of these continuous queries is performed in three phases; the joining phase, the candidate selection phase, and the grouping/output phase. The joining phase employs an in-memory multi-way join algorithm that produces a set of sensor pairs with similar readings. The candidate selection phase filters the output of the joining phase to select candidate join pairs, with enough strength and time span, as specified by the phenomenon definition. The grouping/ output phase constructs the overall phenomenon from the candidate join pairs. We introduce two optimizations to increase the likelihood of phenomena detection while using less system resources. Experimental studies illustrate the performance gains of both the proposed PDT framework and the proposed optimizations
    • …
    corecore