185 research outputs found

    ARH cooperates with AP-1B in the exocytosis of LDLR in polarized epithelial cells

    Get PDF
    The low-density lipoprotein receptor (LDLR) doesn’t directly bind AP-1B; however, it relies on this clathrin adaptor for basolateral exocytosis. Identification of the autosomal recessive hypercholesterolemia protein (ARH) as a link between LDLR and AP-1B explains this apparent discrepancy and provides a model for how other endocytic proteins may contribute to endosomal recycling

    Driving forces for Ag-induced periodic faceting of vicinal Cu(111)

    Full text link
    Adsorption of submonolayer amounts of Ag on vicinal Cu(111) induces periodic faceting. The equilibrium structure is characterized by Ag-covered facets that alternate with clean Cu stripes. In the atomic scale, the driving force is the matching of Ag(111)-like packed rows with Cu(111) terraces underneath. This determines the preference for the facet orientation and the evolution of different phases as a function of coverage. Both Cu and Ag stripe widths can be varied smoothly in the 3-30 nm range by tuning Ag coverage, allowing to test theoretical predictions of elastic theories.Comment: 1 text, 4 figure

    Gating a single-molecule transistor with individual atoms

    Get PDF
    Transistors, regardless of their size, rely on electrical gates to control the conductance between source and drain contacts. In atomic-scale transistors, this conductance is sensitive to single electrons hopping via individual orbitals1, 2. Single-electron transport in molecular transistors has been previously studied using top-down approaches to gating, such as lithography and break junctions1, 3, 4, 5, 6, 7, 8, 9, 10, 11. But atomically precise control of the gate—which is crucial to transistor action at the smallest size scales—is not possible with these approaches. Here, we used individual charged atoms, manipulated by a scanning tunnelling microscope12, to create the electrical gates for a single-molecule transistor. This degree of control allowed us to tune the molecule into the regime of sequential single-electron tunnelling, albeit with a conductance gap more than one order of magnitude larger than observed previously8, 11, 13, 14. This unexpected behaviour arises from the existence of two different orientational conformations of the molecule, depending on its charge state. Our results show that strong coupling between these charge and conformational degrees of freedom leads to new behaviour beyond the established picture of single-electron transport in atomic-scale transistors

    Using Quantum Confinement to Uniquely Identify Devices

    Get PDF
    Modern technology unintentionally provides resources that enable the trust of everyday interactions to be undermined. Some authentication schemes address this issue using devices that give unique outputs in response to a challenge. These signatures are generated by hard-to-predict physical responses derived from structural characteristics, which lend themselves to two different architectures, known as unique objects (UNOs) and physically unclonable functions (PUFs). The classical design of UNOs and PUFs limits their size and, in some cases, their security. Here we show that quantum confinement lends itself to the provision of unique identities at the nanoscale, by using fluctuations in tunnelling measurements through quantum wells in resonant tunnelling diodes (RTDs). This provides an uncomplicated measurement of identity without conventional resource limitations whilst providing robust security. The confined energy levels are highly sensitive to the specific nanostructure within each RTD, resulting in a distinct tunnelling spectrum for every device, as they contain a unique and unpredictable structure that is presently impossible to clone. This new class of authentication device operates with few resources in simple electronic structures above room temperature.Comment: 13 pages, 3 figure

    The Role of Bile in the Regulation of Exocrine Pancreatic Secretion

    Get PDF
    As early as 1926 Mellanby (1) was able to show that introduction of bile into the duodenum of anesthetized cats produces a copious flow of pancreatic juice. In conscious dogs, Ivy & Lueth (2) reported, bile is only a weak stimulant of pancreatic secretion. Diversion of bile from the duodenum, however, did not influence pancreatic volume secretion stimulated by a meal (3,4). Moreover, Thomas & Crider (5) observed that bile not only failed to stimulate the secretion of pancreatic juice but also abolished the pancreatic response to intraduodenally administered peptone or soap

    Contribution of the clathrin adaptor AP-1 subunit µ1 to acidic cluster protein sorting.

    Get PDF
    Acidic clusters act as sorting signals for packaging cargo into clathrin-coated vesicles (CCVs), and also facilitate down-regulation of MHC-I by HIV-1 Nef. To find acidic cluster sorting machinery, we performed a gene-trap screen and identified the medium subunit (µ1) of the clathrin adaptor AP-1 as a top hit. In µ1 knockout cells, intracellular CCVs still form, but acidic cluster proteins are depleted, although several other CCV components were either unaffected or increased, indicating that cells can compensate for long-term loss of AP-1. In vitro experiments showed that the basic patch on µ1 that interacts with the Nef acidic cluster also contributes to the binding of endogenous acidic cluster proteins. Surprisingly, µ1 mutant proteins lacking the basic patch and/or the tyrosine-based motif binding pocket could rescue the µ1 knockout phenotype completely. In contrast, these mutants failed to rescue Nef-induced down-regulation of MHC class I, suggesting a possible mechanism for attacking the virus while sparing the host cell
    corecore