2 research outputs found

    Glacier-fed stream biofilms harbour diverse resistomes and biosynthetic gene clusters 2021.11.18.469141

    No full text
    Background Antimicrobial resistance (AMR) is a universal phenomenon whose origins lay in natural ecological interactions such as competition within niches, within and between micro- to higher-order organisms. However, the ecological and evolutionary processes shaping AMR need to be better understood in view of better antimicrobial stewardship. Resolving antibiotic biosynthetic pathways, including biosynthetic gene clusters (BGCs), and corresponding antimicrobial resistance genes (ARGs) may therefore help in understanding the inherent mechanisms. However, to study these phenomena, it is crucial to examine the origins of AMR in pristine environments with limited anthropogenic influences. In this context, epilithic biofilms residing in glacier-fed streams (GFSs) are an excellent model system to study diverse, intra- and inter-domain, ecological crosstalk.Results We assessed the resistomes of epilithic biofilms from GFSs across the Southern Alps (New Zealand) and the Caucasus (Russia) and observed that both bacteria and eukaryotes encoded twenty-nine distinct AMR categories. Of these, beta-lactam, aminoglycoside, and multidrug resistance were both abundant and taxonomically distributed in most of the bacterial and eukaryotic phyla. AMR-encoding phyla included Bacteroidota and Proteobacteria among the bacteria, alongside Ochrophyta (algae) among the eukaryotes. Additionally, BGCs involved in the production of antibacterial compounds were identified across all phyla in the epilithic biofilms. Furthermore, we found that several bacterial genera (Flavobacterium, Polaromonas, etc.) including representatives of the superphylum Patescibacteria encode both ARGs and BGCs within close proximity of each other, thereby demonstrating their capacity to simultaneously influence and compete within the microbial community.Conclusions Our findings highlight the presence and abundance of AMR in epilithic biofilms within GFSs. Additionally, we identify their role in the complex intra- and inter-domain competition and the underlying mechanisms influencing microbial survival in GFS epilithic biofilms. We demonstrate that eukaryotes may serve as AMR reservoirs owing to their potential for encoding ARGs. We also find that the taxonomic affiliation of the AMR and the BGCs are congruent. Importantly, our findings allow for understanding how naturally occurring BGCs and AMR contribute to the epilithic biofilms mode of life in GFSs. Importantly, these observations may be generalizable and potentially extended to other environments which may be more or less impacted by human activity.Competing Interest StatementThe authors have declared no competing interest.AMRAntimicrobial resistanceARGsAntimicrobial resistance gene(s)BGCBiosynthetic gene clustersCACaucasusCPRCandidate Phyla radiationGFSsGlacier-fed stream(s)GLGlacierIRS-RSisoleucyl-tRNA synthetase - high resistanceIMPIntegrate Meta-Omics PipelineKEGGKyoto Encyclopedia of Genes and GenomesMAGsMetagenome-assembled genome(s)NRPSNon-ribosomal peptide synthetasesPKSPolyketide synthases (type I and type II)RiPPsPost-translationally modified peptide(s)SASouthern Alp

    Genomic and metabolic adaptations of biofilms to ecological windows of opportunities in glacier-fed streams 2021.10.07.463499

    No full text
    Microorganisms dominate life in cryospheric ecosystems. In glacier-fed streams (GFSs), ecological windows of opportunities allow complex microbial biofilms to develop and transiently form the basis of the food web, thereby controlling key ecosystem processes. Here, using high-resolution metagenomics, we unravel strategies that allow biofilms to seize this opportunity in an ecosystem otherwise characterized by harsh environmental conditions. We found a diverse microbiome spanning the entire tree of life and including a rich virome. Various and co-existing energy acquisition pathways point to diverse niches and the simultaneous exploitation of available resources, likely fostering the establishment of complex biofilms in GFSs during windows of opportunity. The wide occurrence of rhodopsins across metagenome-assembled genomes (MAGs), besides chlorophyll, highlights the role of solar energy capture in these biofilms. Concomitantly, internal carbon and nutrient cycling between photoautotrophs and heterotrophs may help overcome constraints imposed by the high oligotrophy in GFSs. MAGs also revealed mechanisms potentially protecting bacteria against low temperatures and high UV-radiation. The selective pressure of the GFS environment is further highlighted by the phylogenomic analysis, differentiating the representatives of the genus Polaromonas, an important component of the GFS microbiome, from those found in other ecosystems. Our findings reveal key genomic underpinnings of adaptive traits that contribute to the success of complex biofilms to exploit environmental opportunities in GFSs, now rapidly changing owing to global warming.Competing Interest StatementThe authors have declared no competing interest
    corecore