20 research outputs found

    Mitochondrial control of cell death induced by hyperosmotic stress

    Get PDF
    HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-XL sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control

    Regulation of autophagy by cytoplasmic p53

    No full text
    LE KREMLIN-B.- PARIS 11-BU Méd (940432101) / SudocSudocFranceF

    BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-XL

    No full text
    Beclin 1 has recently been identified as novel BH3-only protein, meaning that it carries one Bcl-2-homology-3 (BH3) domain. As other BH3-only proteins, Beclin 1 interacts with anti-apoptotic multidomain proteins of the Bcl-2 family (in particular Bcl-2 and its homologue Bcl-X(L)) by virtue of its BH3 domain, an amphipathic alpha-helix that binds to the hydrophobic cleft of Bcl-2/Bcl-X(L). The BH3 domains of other BH3-only proteins such as Bad, as well as BH3-mimetic compounds such as ABT737, competitively disrupt the inhibitory interaction between Beclin 1 and Bcl-2/Bcl-X(L). This causes autophagy of mitochondria (mitophagy) but not of the endoplasmic reticulum (reticulophagy). Only ER-targeted (not mitochondrion-targeted) Bcl-2/Bcl-X(L) can inhibit autophagy induced by Beclin 1, and only Beclin 1-Bcl-2/Bcl-X(L) complexes present in the ER (but not those present on heavy membrane fractions enriched in mitochondria) are disrupted by ABT737. These findings suggest that the Beclin 1-Bcl-2/Bcl-X(L) complexes that normally inhibit autophagy are specifically located in the ER and point to an organelle-specific regulation of autophagy. Furthermore, these data suggest a spatial organization of autophagy and apoptosis control in which BH3-only proteins exert two independent functions. On the one hand, they can induce apoptosis, by (directly or indirectly) activating the mitochondrion-permeabilizing function of pro-apoptotic multidomain proteins from the Bcl-2 family. On the other hand, they can activate autophagy by liberating Beclin 1 from its inhibition by Bcl-2/Bcl-X(L) at the level of the endoplasmic reticulum

    Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy

    No full text
    When added to cells, a variety of autophagy inducers that operate through distinct mechanisms and target different organelles for autophagic destruction (mitochondria in mitophagy, endoplasmic reticulum in reticulophagy) rarely induce autophagic vacuolization in more than 50% or the cells. Here we show that this heterogeneity may be explained by cell cycle-specific effects. The BH3 mimetic ABT737, lithium, rapamycin, tunicamycin or nutrient depletion stereotypically induce autophagy preferentially in the G(1) and S phases of the cell cycle, as determined by simultaneous monitoring of cell cycle markers and the cytoplasmic aggregation of GFP-LC3 in autophagic vacuoles. These results point to a hitherto neglected crosstalk between autophagic vacuolization and cell cycle regulation
    corecore