420 research outputs found
The case for TIPS: an examination of the costs and benefits
Slightly more than a decade has passed since the introduction of the Treasury Inflation-Protected Securities (TIPS) program, through which the U.S. Treasury Department issues inflation-indexed debt. Several studies have suggested that the program has been a financial disappointment for the Treasury and by extension U.S. taxpayers. Relying on ex post analysis, the studies argue that a more cost-effective strategy remains the issuance of nominal Treasury securities. This article proposes that evaluations of the TIPS program be more comprehensive, and instead focus on the ex ante costs of TIPS issuance compared with nominal Treasury issuance. The authors contend that ex ante analysis is a more effective way to assess the costs of TIPS over the long run. Furthermore, relative cost calculations--whether ex post or ex ante--are just one aspect of a comprehensive analysis of the costs and benefits of the TIPS program. TIPS issuance provides other benefits that should be taken into account when evaluating the program, especially when TIPS are only marginally more expensive or about as expensive to issue as nominal Treasury securities.Treasury bonds ; Debt
New, Highly Accurate Propagator for the Linear and Nonlinear Schr\"odinger Equation
A propagation method for the time dependent Schr\"odinger equation was
studied leading to a general scheme of solving ode type equations. Standard
space discretization of time-dependent pde's usually results in system of ode's
of the form u_t -Gu = s where G is a operator (matrix) and u is a
time-dependent solution vector. Highly accurate methods, based on polynomial
approximation of a modified exponential evolution operator, had been developed
already for this type of problems where G is a linear, time independent matrix
and s is a constant vector. In this paper we will describe a new algorithm for
the more general case where s is a time-dependent r.h.s vector. An iterative
version of the new algorithm can be applied to the general case where G depends
on t or u. Numerical results for Schr\"odinger equation with time-dependent
potential and to non-linear Schr\"odinger equation will be presented.Comment: 14 page
A Chebychev propagator with iterative time ordering for explicitly time-dependent Hamiltonians
A propagation method for time-dependent Schr\"odinger equations with an
explicitly time-dependent Hamiltonian is developed where time ordering is
achieved iteratively. The explicit time-dependence of the time-dependent
Schr\"odinger equation is rewritten as an inhomogeneous term. At each step of
the iteration, the resulting inhomogeneous Schr\"odinger equation is solved
with the Chebychev propagation scheme presented in J. Chem. Phys. 130, 124108
(2009). The iteratively time-ordering Chebychev propagator is shown to be
robust, efficient and accurate and compares very favorably to all other
available propagation schemes
An efficient scheme for numerical simulations of the spin-bath decoherence
We demonstrate that the Chebyshev expansion method is a very efficient
numerical tool for studying spin-bath decoherence of quantum systems. We
consider two typical problems arising in studying decoherence of quantum
systems consisting of few coupled spins: (i) determining the pointer states of
the system, and (ii) determining the temporal decay of quantum oscillations. As
our results demonstrate, for determining the pointer states, the
Chebyshev-based scheme is at least a factor of 8 faster than existing
algorithms based on the Suzuki-Trotter decomposition. For the problems of
second type, the Chebyshev-based approach has been 3--4 times faster than the
Suzuki-Trotter-based schemes. This conclusion holds qualitatively for a wide
spectrum of systems, with different spin baths and different Hamiltonians.Comment: 8 pages (RevTeX), 3 EPS figure
An Exercise in Forecasting Loop Current and Eddy Frontal Positions in the Gulf of Mexico
As part of a model-evaluation exercise to forecast Loop Current and Loop Current eddy frontal positions in the Gulf of Mexico, the Princeton Regional Ocean Forecast System (PROFS) is tested to forecast 14 4-week periods Aug/25/99- Sep/20/00, during which a powerful eddy, Eddy Juggernaut (Eddy-J) separated from the Loop Current and propagated southwestward. To initialize each forecast, PROFS assimilates satellite sea surface height (SSH) anomaly and temperature (SST) by projecting them into subsurface density using a surface/subsurface correlation that is a function of the satellite SSH anomaly. The closest distances of the forecast fronts from seven fixed stations in the northern Gulf over a 4-week forecast horizon are then compared against frontal observations derived primarily from drifters. Model forecasts beat persistence and the major source of error is found to be due to the initial hindcast fields
Evolution and Nucleosynthesis of Zero Metal Intermediate Mass Stars
New stellar models with mass ranging between 4 and 8 Mo, Z=0 and Y=0.23 are
presented. The models have been evolved from the pre Main Sequence up to the
Asymptotic Giant Branch (AGB). At variance with previous claims, we find that
these updated stellar models do experience thermal pulses in the AGB phase. In
particular we show that: a) in models with mass larger than 6 Mo, the second
dredge up is able to raise the CNO abundance in the envelope enough to allow a
"normal" AGB evolution, in the sense that the thermal pulses and the third
dredge up settle on; b) in models of lower mass, the efficiency of the CNO
cycle in the H-burning shell is controlled by the carbon produced locally via
the 3alpha reactions. Nevertheless the He-burning shell becomes thermally
unstable after the early AGB. The expansion of the overlying layers induced by
these weak He-shell flashes is not sufficient by itself to allow a deep
penetration of the convective envelope. However, immediately after that, the
maximum luminosity of the He flash is attained and a convective shell
systematically forms at the base of the H-rich envelope. The innermost part of
this convective shell probably overlaps the underlying C-rich region left by
the inter-shell convection during the thermal pulse, so that fresh carbon is
dredged up in a "hot" H-rich environment and a H flash occurs. This flash
favours the expansion of the outermost layers already started by the weak
thermal pulse and a deeper penetration of the convective envelope takes place.
Then, the carbon abundance in the envelope rises to a level high enough that
the further evolution of these models closely resembles that of more metal rich
AGB stars. These stars provide an important source of primary carbon and
nitrogen.Comment: 28 pages, 5 tables and 17 figures. Accepted for publication in Ap
Quantum Dynamics of Spin Wave Propagation Through Domain Walls
Through numerical solution of the time-dependent Schrodinger equation, we
demonstrate that magnetic chains with uniaxial anisotropy support stable
structures, separating ferromagnetic domains of opposite magnetization. These
structures, domain walls in a quantum system, are shown to remain stable if
they interact with a spin wave. We find that a domain wall transmits the
longitudinal component of the spin excitations only. Our results suggests that
continuous, classical spin models described by LLG equation cannot be used to
describe spin wave-domain wall interaction in microscopic magnetic systems
Origin of the Canonical Ensemble: Thermalization with Decoherence
We solve the time-dependent Schrodinger equation for the combination of a
spin system interacting with a spin bath environment. In particular, we focus
on the time development of the reduced density matrix of the spin system. Under
normal circumstances we show that the environment drives the reduced density
matrix to a fully decoherent state, and furthermore the diagonal elements of
the reduced density matrix approach those expected for the system in the
canonical ensemble. We show one exception to the normal case is if the spin
system cannot exchange energy with the spin bath. Our demonstration does not
rely on time-averaging of observables nor does it assume that the coupling
between system and bath is weak. Our findings show that the canonical ensemble
is a state that may result from pure quantum dynamics, suggesting that quantum
mechanics may be regarded as the foundation of quantum statistical mechanics.Comment: 12 pages, 4 figures, accepted for publication by J. Phys. Soc. Jp
First Stars. I. Evolution without mass loss
The first generation of stars was formed from primordial gas. Numerical
simulations suggest that the first stars were predominantly very massive, with
typical masses M > 100 Mo. These stars were responsible for the reionization of
the universe, the initial enrichment of the intergalactic medium with heavy
elements, and other cosmological consequences. In this work, we study the
structure of Zero Age Main Sequence stars for a wide mass and metallicity range
and the evolution of 100, 150, 200, 250 and 300 Mo galactic and pregalactic Pop
III very massive stars without mass loss, with metallicity Z=10E-6 and 10E-9,
respectively. Using a stellar evolution code, a system of 10 equations together
with boundary conditions are solved simultaneously. For the change of chemical
composition, which determines the evolution of a star, a diffusion treatment
for convection and semiconvection is used. A set of 30 nuclear reactions are
solved simultaneously with the stellar structure and evolution equations.
Several results on the main sequence, and during the hydrogen and helium
burning phases, are described. Low metallicity massive stars are hotter and
more compact and luminous than their metal enriched counterparts. Due to their
high temperatures, pregalactic stars activate sooner the triple alpha reaction
self-producing their own heavy elements. Both galactic and pregalactic stars
are radiation pressure dominated and evolve below the Eddington luminosity
limit with short lifetimes. The physical characteristics of the first stars
have an important influence in predictions of the ionizing photon yields from
the first luminous objects; also they develop large convective cores with
important helium core masses which are important for explosion calculations.Comment: 17 pages, 24 figures, 2 table
- …