30 research outputs found

    Palm Kernel Shell as Partial Replacement for Normal Weight Aggregate in Concrete

    Get PDF
    Palm Kernel Shells (PKS) are fractions of shells that result from the cracking of the nut to remove the seed for the production of palm kernel oil. They are of irregular shapes and vary in sizes from fine aggregate to coarse aggregate. The aim of this research was to determine the effect of PKS on Normal Weight Concrete (NWC) as partial replacement of normal weight aggregate (NWA). Effects of PKS on NWC considered were in terms of workability, density, compressive strength, splitting tensile strength, and the water absorption of the concrete. Batching was by volume since PKS was characterized as a light weight material, and substitutions were made at 0%, 25%, and 50%. The mix ratio adopted was 1:2:3 for cement, fine aggregate, and coarse aggregate with a constant free water to cement ratio (w/c) of 0.58. Curing method was by immersion and effect on the mechanical properties (compressive and tensile strengths) were determined at 7 and 28 days of curing. It was observed that the compressive, tensile strength, workability, and concrete density reduce as PKS content is increased in the mix. On the other hand, water absorption increases with increased in PKS content. However, results were in acceptable range for normal concrete. Keywords: Palm kernel shells, normal weight concrete, normal weight aggregat

    Multidisciplinary approach to genomics research in Africa:the AfriCRAN model

    Get PDF
    This article is an outcome of the African Craniofacial Anomalies Research Network (AfriCRAN) Human Hereditary and Health (H3A) grant planning meeting in 2012 in Lagos, Nigeria. It describes the strengths of a multidisciplinary team approach to solving complex genetic traits in the craniofacial region. It also highlights the different components and argues for the composition of similar teams to fast track the discovery of disease genes, diagnostic tools, improved clinical treatment and ultimately prevention of disease

    Book Reviews

    No full text

    Dielectrophoretic profiling of erythrocytes to study the impacts of metabolic stress, temperature, and storage duration utilizing a point-and-planar microdevice

    No full text
    Abstract Dielectrophoresis (DEP) is widely utilized for trapping and sorting various types of cells, including live and dead cells and healthy and infected cells. This article focuses on the dielectric characterization of erythrocytes (red blood cells or RBCs) by quantifying DEP crossover frequency using a novel point-and-planar microwell device platform. Numerical simulations using COMSOL Multiphysics software demonstrate that the distribution of the DEP force is influenced by factors such as the shape of the point electrode, spacing between the point and planar electrodes, and the type of bioparticle being investigated. The dependency on electrode spacing is experimentally evaluated by analyzing the DEP crossover response of erythrocytes. Furthermore, the results are validated against the traditional electrical characterization technique called electrorotation, which typically requires laborious fabrication and operation using quadrupole electrodes. Other significant factors, including erythrocyte storage age and the changes in cell properties over time since collection, osmolarity, and temperature, are also assessed to determine the optimal conditions for erythrocyte characterization. The findings indicate a significant difference between fresh and stored erythrocyte samples (up to 4 days), highlighting the importance of maintaining an isotonic medium for cell storage

    Application of ethanol extracts of Tapinanthus dodoneifolius to inhibit annealed carbon corrosion in 2 M HCl and 3.5% NaCl solutions

    No full text
    Protection effect of ethanol extracts of Tapinanthus dodoneifolius leaf (TD extracts) on corrosion of annealed carbon (FE164531) in 2 M HCl and 3.5% NaCl solution has been investigated by weight loss and electrochemical techniques. Surface morphology and elemental analysis was carried out on the corroded specimens using Scanning Electron Microscope/ Energy Dispersive X-ray Spectroscopy (SEM/EDS) to augment results obtained. The data obtained from weight loss revealed that the corrosion protection potentials of TD extract is temperature-concentration dependent. The effectiveness of protection against the corrosive environment increased with increasing extracts concentration but decreased with increased temperature. Electrochemical polarization data showed TD extracts suppressed both the cathodic and anodic processes on FE164531 specimen surface. Calculated thermodynamic parameters showed that TD extracts adsorption process was spontaneous with likely electrostatic interactions which propose physical adsorption, a phenomenon consistent with unfavorable adsorption with increasing experimental temperature. The elemental analysis data show the presence of TD extracts species on FE164531 surface supporting strong adsorption of the extracts on the metal surface while SEM showed lesser corroded surface in the presence of TD extracts

    Leveraging H3Africa Scholarly Publications for Technology-Enhanced Personalized Bioinformatics Education

    No full text
    The Coronavirus Disease 2019 (COVID-19) pandemic has catalyzed the expectations for technology-enhanced interactions with personalized educational materials. Adjusting the content of educational materials to the geographical location of a learner is a customization feature of personalized education and is used to develop the interest of a learner in the content. The educational content of interest in this report is bioinformatics, in which the knowledge spans biological science and applied mathematics disciplines. The Human Heredity and Health in Africa (H3Africa) Initiative is a resource suitable for use when obtaining data and peer-reviewed scholarly articles, which are geographically relevant and focus on authentic problem solving in the human health domain. We developed a computerized platform of interactive visual representations of curated bioinformatics datasets from H3Africa projects, which also supports customization, individualization and adaptation features of personalized education. We obtained evidence for the positive effect size and acceptable usability of a visual analytics resource designed for the retrieval-based learning of facts on functional impacts of genomic sequence variants. We conclude that technology-enhanced personalized bioinformatics educational interventions have implications in (1) the meaningful learning of bioinformatics; (2) stimulating additional student interest in bioinformatics; and (2) improving the accessibility of bioinformatics education to non-bioinformaticians

    Visual Analytics for Robust Investigations of Placental Aquaporin Gene Expression in Response to Maternal SARS-CoV-2 Infection

    No full text
    The human placenta is a multifunctional, disc-shaped temporary fetal organ that develops in the uterus during pregnancy, connecting the mother and the fetus. The availability of large-scale datasets on the gene expression of placental cell types and scholarly articles documenting adverse pregnancy outcomes from maternal infection warrants the use of computational resources to aid in knowledge generation from disparate data sources. Using maternal Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection as a case study in microbial infection, we constructed integrated datasets and implemented visual analytics resources to facilitate robust investigations of placental gene expression data in the dimensions of flow, curation, and analytics. The visual analytics resources and associated datasets can support a greater understanding of SARS-CoV-2-induced changes to the human placental expression levels of 18,882 protein-coding genes and at least 1233 human gene groups/families. We focus this report on the human aquaporin gene family that encodes small integral membrane proteins initially studied for their roles in water transport across cell membranes. Aquaporin-9 (AQP9) was the only aquaporin downregulated in term placental villi from SARS-CoV-2-positive mothers. Previous studies have found that (1) oxygen signaling modulates placental development; (2) oxygen tension could modulate AQP9 expression in the human placenta; and (3) SARS-CoV-2 can disrupt the formation of oxygen-carrying red blood cells in the placenta. Thus, future research could be performed on microbial infection-induced changes to (1) the placental hematopoietic stem and progenitor cells; and (2) placental expression of human aquaporin genes, especially AQP9
    corecore