383 research outputs found
Anisotropy and periodicity in the density distribution of electrons in a quantum-well
We use low temperature near-field optical spectroscopy to image the electron
density distribution in the plane of a high mobility GaAs quantum well. We find
that the electrons are not randomly distributed in the plane, but rather form
narrow stripes (width smaller than 150 nm) of higher electron density. The
stripes are oriented along the [1-10 ] crystal direction, and are arranged in a
quasi-periodic structure. We show that elongated structural mounds, which are
intrinsic to molecular beam epitaxy, are responsible for the creation of this
electron density texture.Comment: 10 pages, 3 figure
Peristaltic Transport of a Physiological Fluid in an Asymmetric Porous Channel in the Presence of an External Magnetic Field
The paper deals with a theoretical investigation of the peristaltic transport
of a physiological fluid in a porous asymmetric channel under the action of a
magnetic field. The stream function, pressure gradient and axial velocity are
studied by using appropriate analytical and numerical techniques. Effects of
different physical parameters such as permeability, phase difference, wave
amplitude and magnetic parameter on the velocity, pumping characteristics,
streamline pattern and trapping are investigated with particular emphasis. The
computational results are presented in graphical form. The results are found to
be in perfect agreement with those of a previous study carried out for a
non-porous channel in the absence of a magnetic field
Statistical Properties of Contact Maps
A contact map is a simple representation of the structure of proteins and
other chain-like macromolecules. This representation is quite amenable to
numerical studies of folding. We show that the number of contact maps
corresponding to the possible configurations of a polypeptide chain of N amino
acids, represented by (N-1)-step self avoiding walks on a lattice, grows
exponentially with N for all dimensions D>1. We carry out exact enumerations in
D=2 on the square and triangular lattices for walks of up to 20 steps and
investigate various statistical properties of contact maps corresponding to
such walks. We also study the exact statistics of contact maps generated by
walks on a ladder.Comment: Latex file, 15 pages, 12 eps figures. To appear on Phys. Rev.
Peristaltic Transport of a Couple Stress Fluid: Some Applications to Hemodynamics
The present paper deals with a theoretical investigation of the peristaltic
transport of a couple stress fluid in a porous channel. The study is motivated
towards the physiological flow of blood in the micro-circulatory system, by
taking account of the particle size effect. The velocity, pressure gradient,
stream function and frictional force of blood are investigated, when the
Reynolds number is small and the wavelength is large, by using appropriate
analytical and numerical methods. Effects of different physical parameters
reflecting porosity, Darcy number, couple stress parameter as well as amplitude
ratio on velocity profiles, pumping action and frictional force, streamlines
pattern and trapping of blood are studied with particular emphasis. The
computational results are presented in graphical form. The results are found to
be in good agreement with those of Shapiro et. al \cite{r25} that was carried
out for a non-porous channel in the absence of couple stress effect. The
present study puts forward an important observation that for peristaltic
transport of a couple stress fluid during free pumping when the couple stress
effect of the fluid/Darcy permeability of the medium, flow reversal can be
controlled to a considerable extent. Also by reducing the permeability it is
possible to avoid the occurrence of trapping phenomenon
Near-field spectroscopy of a gated electron gas: a direct evidence for electrons localization
The near-field photoluminescence of a gated two-dimensional electron gas is
measured. We use the negatively charged exciton, formed by binding of an
electron to a photo-excited electron-hole pair, as an indicator for the local
presence of charge. Large spatial fluctuations in the luminescence intensity of
the negatively charged exciton are observed. These fluctuations are shown to be
due to electrons localized in the random potential of the remote ionized
donors. We use these fluctuations to image the electrons and donors
distribution in the plane.Comment: 10 pages, 5 figures, to be published in PR
State Hierarchy Induced by Correlated Spin Domains in short range spin glasses
We generate equilibrium configurations for the three and four dimensional
Ising spin glass with Gaussian distributed couplings at temperatures well below
the transition temperature T_c. These states are analyzed by a recently
proposed method using clustering. The analysis reveals a hierarchical state
space structure. At each level of the hierarchy states are labeled by the
orientations of a set of correlated macroscopic spin domains. Our picture of
the low temperature phase of short range spin glasses is that of a State
Hierarchy Induced by Correlated Spin domains (SHICS). The complexity of the low
temperature phase is manifest in the fact that the composition of such a spin
domain (i.e. its constituent spins), as well as its identifying label, are
defined and determined by the ``location'' in the state hierarchy at which it
appears. Mapping out the phase space structure by means of the orientations
assumed by these domains enhances our ability to investigate the overlap
distribution, which we find to be non-trivial. Evidence is also presented that
these states may have a non-ultrametric structure.Comment: 30 pages, 17 figure
Damage Spreading in the Ising Model
We present two new results regarding damage spreading in ferromagnetic Ising
models. First, we show that a damage spreading transition can occur in an Ising
chain that evolves in contact with a thermal reservoir. Damage heals at low
temperature and spreads for high T. The dynamic rules for the system's
evolution for which such a transition is observed are as legitimate as the
conventional rules (Glauber, Metropolis, heat bath). Our second result is that
such transitions are not always in the directed percolation universality class.Comment: 5 pages, RevTeX, revised and extended version, including 3 postscript
figure
Order-Based Representation in Random Networks of Cortical Neurons
The wide range of time scales involved in neural excitability and synaptic transmission might lead to ongoing change in the temporal structure of responses to recurring stimulus presentations on a trial-to-trial basis. This is probably the most severe biophysical constraint on putative time-based primitives of stimulus representation in neuronal networks. Here we show that in spontaneously developing large-scale random networks of cortical neurons in vitro the order in which neurons are recruited following each stimulus is a naturally emerging representation primitive that is invariant to significant temporal changes in spike times. With a relatively small number of randomly sampled neurons, the information about stimulus position is fully retrievable from the recruitment order. The effective connectivity that makes order-based representation invariant to time warping is characterized by the existence of stations through which activity is required to pass in order to propagate further into the network. This study uncovers a simple invariant in a noisy biological network in vitro; its applicability under in vivo constraints remains to be seen
Charged exctions in the fractional quantum Hall regime
We study the photoluminescence spectrum of a low density ()
two-dimensional electron gas at high magnetic fields and low temperatures. We
find that the spectrum in the fractional quantum Hall regime can be understood
in terms of singlet and triplet charged-excitons. We show that these spectral
lines are sensitive probes for the electrons compressibility. We identify the
dark triplet charged-exciton and show that it is visible at the spectrum at
K. We find that its binding energy scales like , where is
the magnetic length, and it crosses the singlet slightly above 15 T.Comment: 10 pages, 5 figure
Percolation-type description of the metal-insulator transition in two dimensions
A simple non-interacting-electron model, combining local quantum tunneling
and global classical percolation (due to a finite dephasing time at low
temperatures), is introduced to describe a metal-insulator transition in two
dimensions. It is shown that many features of the experiments, such as the
exponential dependence of the resistance on temperature on the metallic side,
the linear dependence of the exponent on density, the scale of the
critical resistance, the quenching of the metallic phase by a parallel magnetic
field and the non-monotonic dependence of the critical density on a
perpendicular magnetic field, can be naturally explained by the model.Comment: 4 pages, 4 figure
- …