42 research outputs found

    Maximum Entropy RL (Provably) Solves Some Robust RL Problems

    Full text link
    Many potential applications of reinforcement learning (RL) require guarantees that the agent will perform well in the face of disturbances to the dynamics or reward function. In this paper, we prove theoretically that standard maximum entropy RL is robust to some disturbances in the dynamics and the reward function. While this capability of MaxEnt RL has been observed empirically in prior work, to the best of our knowledge our work provides the first rigorous proof and theoretical characterization of the MaxEnt RL robust set. While a number of prior robust RL algorithms have been designed to handle similar disturbances to the reward function or dynamics, these methods typically require adding additional moving parts and hyperparameters on top of a base RL algorithm. In contrast, our theoretical results suggest that MaxEnt RL by itself is robust to certain disturbances, without requiring any additional modifications. While this does not imply that MaxEnt RL is the best available robust RL method, MaxEnt RL does possess a striking simplicity and appealing formal guarantees.Comment: Blog post and videos: https://bair.berkeley.edu/blog/2021/03/10/maxent-robust-rl/. arXiv admin note: text overlap with arXiv:1910.0191

    Contrastive Difference Predictive Coding

    Full text link
    Predicting and reasoning about the future lie at the heart of many time-series questions. For example, goal-conditioned reinforcement learning can be viewed as learning representations to predict which states are likely to be visited in the future. While prior methods have used contrastive predictive coding to model time series data, learning representations that encode long-term dependencies usually requires large amounts of data. In this paper, we introduce a temporal difference version of contrastive predictive coding that stitches together pieces of different time series data to decrease the amount of data required to learn predictions of future events. We apply this representation learning method to derive an off-policy algorithm for goal-conditioned RL. Experiments demonstrate that, compared with prior RL methods, ours achieves 2×2 \times median improvement in success rates and can better cope with stochastic environments. In tabular settings, we show that our method is about 20×20 \times more sample efficient than the successor representation and 1500×1500 \times more sample efficient than the standard (Monte Carlo) version of contrastive predictive coding.Comment: Website (https://chongyi-zheng.github.io/td_infonce) and code (https://github.com/chongyi-zheng/td_infonce

    Contrastive Value Learning: Implicit Models for Simple Offline RL

    Full text link
    Model-based reinforcement learning (RL) methods are appealing in the offline setting because they allow an agent to reason about the consequences of actions without interacting with the environment. Prior methods learn a 1-step dynamics model, which predicts the next state given the current state and action. These models do not immediately tell the agent which actions to take, but must be integrated into a larger RL framework. Can we model the environment dynamics in a different way, such that the learned model does directly indicate the value of each action? In this paper, we propose Contrastive Value Learning (CVL), which learns an implicit, multi-step model of the environment dynamics. This model can be learned without access to reward functions, but nonetheless can be used to directly estimate the value of each action, without requiring any TD learning. Because this model represents the multi-step transitions implicitly, it avoids having to predict high-dimensional observations and thus scales to high-dimensional tasks. Our experiments demonstrate that CVL outperforms prior offline RL methods on complex continuous control benchmarks.Comment: Deep Reinforcement Learning Workshop, NeurIPS 202

    HIQL: Offline Goal-Conditioned RL with Latent States as Actions

    Full text link
    Unsupervised pre-training has recently become the bedrock for computer vision and natural language processing. In reinforcement learning (RL), goal-conditioned RL can potentially provide an analogous self-supervised approach for making use of large quantities of unlabeled (reward-free) data. However, building effective algorithms for goal-conditioned RL that can learn directly from diverse offline data is challenging, because it is hard to accurately estimate the exact value function for faraway goals. Nonetheless, goal-reaching problems exhibit structure, such that reaching distant goals entails first passing through closer subgoals. This structure can be very useful, as assessing the quality of actions for nearby goals is typically easier than for more distant goals. Based on this idea, we propose a hierarchical algorithm for goal-conditioned RL from offline data. Using one action-free value function, we learn two policies that allow us to exploit this structure: a high-level policy that treats states as actions and predicts (a latent representation of) a subgoal and a low-level policy that predicts the action for reaching this subgoal. Through analysis and didactic examples, we show how this hierarchical decomposition makes our method robust to noise in the estimated value function. We then apply our method to offline goal-reaching benchmarks, showing that our method can solve long-horizon tasks that stymie prior methods, can scale to high-dimensional image observations, and can readily make use of action-free data. Our code is available at https://seohong.me/projects/hiql

    A Connection between One-Step Regularization and Critic Regularization in Reinforcement Learning

    Full text link
    As with any machine learning problem with limited data, effective offline RL algorithms require careful regularization to avoid overfitting. One-step methods perform regularization by doing just a single step of policy improvement, while critic regularization methods do many steps of policy improvement with a regularized objective. These methods appear distinct. One-step methods, such as advantage-weighted regression and conditional behavioral cloning, truncate policy iteration after just one step. This ``early stopping'' makes one-step RL simple and stable, but can limit its asymptotic performance. Critic regularization typically requires more compute but has appealing lower-bound guarantees. In this paper, we draw a close connection between these methods: applying a multi-step critic regularization method with a regularization coefficient of 1 yields the same policy as one-step RL. While practical implementations violate our assumptions and critic regularization is typically applied with smaller regularization coefficients, our experiments nevertheless show that our analysis makes accurate, testable predictions about practical offline RL methods (CQL and one-step RL) with commonly-used hyperparameters. Our results that every problem can be solved with a single step of policy improvement, but rather that one-step RL might be competitive with critic regularization on RL problems that demand strong regularization.Comment: Accepted to ICML 2023. Video (https://www.youtube.com/watch?v=1xlixIHZ0R4) and code (https://github.com/ben-eysenbach/ac-connection
    corecore