2 research outputs found

    High connectivity of the white seabream (Diplodus sargus, l. 1758) in the aegean sea, eastern mediterranean basin

    No full text
    Population dynamics in the marine realm can shape species’ spatial structure and genetic variability between given geographical areas. Connectivity is an important factor of species’ population structure. In this study, we examined the genetic diversity and structure of white seabream (Diplodus sargus, L. 1758) in the eastern Mediterranean basin, using a panel of four microsatellite markers. Recorded low FST values within the study area indicate little evidence of genetic differentiation among populations. Results suggest high gene flow which may imply near-panmixia between populations, indicating the possibility of a probable movement of adult migrants, or strong passive drift at sea in early life stages of the species. To this extent, bibliographically speaking, different species within the Sparidae family favor altered population dynamics patterns with respect to local populations and genetic divergence, in the context of the molecular marker used. © 2019 by the authors. Licensee MDPI, Basel, Switzerland

    Heterozygosity fitness correlations and generation interval of the Norway lobster in the Aegean Sea, eastern Mediterranean

    No full text
    Background: Comprehensively detailed information on population dynamics for benthic species is crucial since potential admixture of individuals could shift the genetic subdivision and age structure during a full breeding period. The apparent genetic impact of the potential recruitment strategy of Norway lobster Nephrops norvegicus is still under research. For this reason the present study was focused on genetic variation of the species over a given continuous year period in a semi-enclosed gulf of the Aegean Sea. Results: Analyses revealed that the relative smaller size class in females and the apparent faster growth of males may represent a key-role differential strategy for the two sexes, whereas females tend to mature slower. Heterozygosity fitness correlations (HFCs) showed substantially significant associations suggesting that inbreeding depression for females and outbreeding depression for males are the proximate fitness mechanisms, respectively. Conclusions: Nephrops norvegicus uniformal genetic composition (background of high gene flow), could be attributed to potential population recolonization, due to a hypothesized passive larval movement from deeper waters, which may suggest that some offspring of local residents and potential male non-breeders from other regions admixture randomly. © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
    corecore