10 research outputs found

    Methylation Status of Gene Bodies of Selected microRNA Genes Associated with Neoplastic Transformation in Equine Sarcoids

    No full text
    Horses are of great importance in recreation, livestock production, as working animals in poorly developed countries, and for equine-assisted therapy. Equine sarcoids belong to the most commonly diagnosed tumors in this species. They may cause discomfort, pain, and can lead to the permanent impairment of motor function. The molecular bases of their formation are still under investigation. Our previous studies revealed altered microRNA (miRNA) expression and DNA methylation levels in sarcoid tumors. Abnormal patterns of methylation may be responsible for changes in gene expression levels, including microRNAs. Recently, the DNA methylation of gene bodies has also been shown to have an impact on gene expression. Thus, the aim of the study was to investigate the methylation pattern of gene bodies of chosen miRNAs identified in sarcoid tissue (miR-101, miR-10b, miR-200a, and miR-338-3p), which have also been established to play roles in neoplastic transformation. To this end, we applied qRT-PCR, Bisulfite Sequencing PCR (BSP), and Mquant methods. As a result, we identified the statistically significant downregulation of pri-mir-101-1, pri-mir-10b, and pri-mir-200a in the sarcoid samples in comparison to the control. The DNA methylation analysis revealed their hypermethylation. This suggests that DNA methylation may be one mechanism responsible for the downregulation of theses miRNAs. However, the identified differences in the methylation levels are not very high, which implies that other mechanisms may also underlie the downregulation of the expression of these miRNAs in equine sarcoids. For the first time, the results obtained shed light on microRNA expression regulation by gene body methylation in equine sarcoids and provide bases for further deeper studies on other mechanisms influencing the miRNA repertoire

    The Induced Expression of <i>BPV E4</i> Gene in Equine Adult Dermal Fibroblast Cells as a Potential Model of Skin Sarcoid-like Neoplasia

    No full text
    The equine sarcoid is one of the most common neoplasias in the Equidae family. Despite the association of this tumor with the presence of bovine papillomavirus (BPV), the molecular mechanism of this lesion has not been fully understood. The transgenization of equine adult cutaneous fibroblast cells (ACFCs) was accomplished by nucleofection, followed by detection of molecular modifications using high-throughput NGS transcriptome sequencing. The results of the present study confirm that BPV-E4- and BPV-E1^E4-mediated nucleofection strategy significantly affected the transcriptomic alterations, leading to sarcoid-like neoplastic transformation of equine ACFCs. Furthermore, the results of the current investigation might contribute to the creation of in vitro biomedical models suitable for estimating the fates of molecular dedifferentiability and the epigenomic reprogrammability of BPV-E4 and BPV-E4^E1 transgenic equine ACFC-derived sarcoid-like cell nuclei in equine somatic cell-cloned embryos. Additionally, these in vitro models seem to be reliable for thoroughly recognizing molecular mechanisms that underlie not only oncogenic alterations in transcriptomic signatures, but also the etiopathogenesis of epidermal and dermal sarcoid-dependent neoplastic transformations in horses and other equids. For those reasons, the aforementioned transgenic models might be useful for devising clinical treatments in horses afflicted with sarcoid-related neoplasia of cutaneous and subcutaneous tissues

    Polymorphism within <i>IGFBP</i> Genes Affects the Acidity, Colour, and Shear Force of Rabbit Meat

    No full text
    Rabbits are important livestock animals, popular for their nutritional value. Nowadays, the molecular background of traits influencing the quality of meat and meat products is in high demand. Therefore, in the current study, we analyse the sequences of IGFBP1, IGFBP2, IGFBP4, IGFBP5, and IGFBP6 for possible polymorphisms. Based on a bioinformatics analysis in an association study on 466 animals of different breeds (New Zealand White × Flemish Giant crossbreed (9NZWxFG), Termond White (TW), Popielno White (PW), and Flemish Giant (FG)), we analyse the influence of five polymorphisms within the IGFBP genes. Statistically significant differences were found among the carcass and meat quality traits but not for all of the analysed rabbit breeds. The most promising polymorphism was g.158093018A>T within the IGFBP5 gene. The values of pH24 of m.longissimus lumborum (m.l.l.) and biceps femoris muscles (m.b.f.) were higher for the AT genotypes compared to the AA genotypes for the TW and NZWxFG crossbreeds. Also, for pH24, we found differences in ing.41594308T>C for NZWxFG, where the TT genotype values were higher than the TC values. We found differences in L*24 on m.l.l. for g.41592248A>C for NZWxFG. For m.b.f., significant differences were found in b*45 for g.3431insAC in the FG population and a*45 for g.41592248A>C and g.158093018A>T in the TW population. The shear force statistically differed for g.158093018A>T in TW rabbits and g.41592248A>C for NZWxFG. We conclude that this polymorphism may be promising for better quality rabbit meat and may be implemented in selection processes

    Genomic landscape of copy number variation and copy neutral loss of heterozygosity events in equine sarcoids reveals increased instability of the sarcoid genome.

    No full text
    Although they are the most common neoplasms in equids, sarcoids are not fully characterized at the molecular level. Therefore, the objective of this study was to characterize the landscape of structural rearrangements, such as copy number variation (CNV) and copy neutral loss of heterozygosity (cnLOH), in the genomes of sarcoid tumor cells. This information will not only broaden our understanding of the characteristics of this genome but will also improve the general knowledge of this tumor and the mechanisms involved in its generation. To this end, Equine SNP64K Illumina microarrays were applied along with bioinformatics tools dedicated for signal intensity analysis. The analysis revealed increased instability of the genome of sarcoid cells compared with unaltered skin tissue samples, which was manifested by the prevalence of CNV and cnLOH events. Many of the identified CNVs overlapped with the other research results, but the simultaneously observed variability in the number and sizes of detected aberrations indicated a need for further studies and the development of more reliable bioinformatics algorithms. The functional analysis of genes co-localized with the identified aberrations revealed that these genes are engaged in vital cellular processes. In addition, a number of these genes directly contribute to neoplastic transformation. Furthermore, large numbers of cnLOH events identified in the sarcoids suggested that they may play no less significant roles than CNVs in the carcinogenesis of this tumor. Thus, our results indicate the importance of cnLOH and CNV in equine sarcoid oncogenesis and present a direction of future research

    Assessment of BPV-1 Mediated Matrix Metalloproteinase Genes Deregulation in the In Vivo and In Vitro Models Designed to Explore Molecular Nature of Equine Sarcoids

    No full text
    Matrix metalloproteinases (MMPs) represent a family of enzymes capable of biocatalytically breaking down the structural and functional proteins responsible for extracellular matrix (ECM) integrity. This capability is widely used in physiological processes; however, imbalanced MMP activity can trigger the onset and progression of various pathological changes, including the neoplasmic transformation of different cell types. We sought to uncover molecular mechanisms underlying alterations in transcriptional profiles of genes coding for MMPs, which were comprehensively identified in equine adult dermal tissue bioptates, sarcoid-derived explants, and ex vivo expanded adult cutaneous fibroblast cell (ACFC) lines subjected to inducible oncogenic transformation into sarcoid-like cells. The results strongly support the hypothesis that the transcriptional activity of MMP genes correlates with molecular modifications arising in equine dermal cells during their conversion into sarcoid cells. The alterations in MMP transcription signatures occurs in both sarcoid tissues and experimentally transformed equine ACFC lines expressing BPV1-E4^E1 transgene, which were characterized by gene up- and down-regulation patterns

    Tracking the Molecular Scenarios for Tumorigenic Remodeling of Extracellular Matrix Based on Gene Expression Profiling in Equine Skin Neoplasia Models

    No full text
    An important component of tissues is the extracellular matrix (ECM), which not only forms a tissue scaffold, but also provides the environment for numerous biochemical reactions. Its composition is strictly regulated, and any irregularities can result in the development of many diseases, including cancer. Sarcoid is the most common skin cancer in equids. Its formation results from the presence of the genetic material of the bovine papillomavirus (BPV). In addition, it is assumed that sarcoid-dependent oncogenic transformation arises from a disturbed wound healing process, which may be due to the incorrect functioning of the ECM. Moreover, sarcoid is characterized by a failure to metastasize. Therefore, in this study we decided to investigate the differences in the expression profiles of genes related not only to ECM remodeling, but also to the cell adhesion pathway, in order to estimate the influence of disturbances within the ECM on the sarcoid formation process. Furthermore, we conducted comparative research not only between equine sarcoid tissue bioptates and healthy skin-derived explants, but also between dermal fibroblast cell lines transfected and non-transfected with a construct encoding the E4 protein of the BP virus, in order to determine its effect on ECM disorders. The obtained results strongly support the hypothesis that ECM-related genes are correlated with sarcoid formation. The deregulated expression of selected genes was shown in both equine sarcoid tissue bioptates and adult cutaneous fibroblast cell (ACFC) lines neoplastically transformed by nucleofection with gene constructs encoding BPV1-E1^E4 protein. The identified genes (CD99, ITGB1, JAM3 and CADM1) were up- or down-regulated, which pinpointed the phenotypic differences from the backgrounds noticed for adequate expression profiles in other cancerous or noncancerous tumors as reported in the available literature data. Unravelling the molecular pathways of ECM remodeling and cell adhesion in the in vivo and ex vivo models of epidermal/dermal sarcoid-related cancerogenesis might provide powerful tools for further investigations of genetic and epigenetic biomarkers for both silencing and re-initiating the processes of sarcoid-dependent neoplasia. Recognizing those biomarkers might insightfully explain the relatively high capacity of sarcoid-descended cancerous cell derivatives to epigenomically reprogram their nonmalignant neoplastic status in domestic horse cloned embryos produced by somatic cell nuclear transfer (SCNT)

    Assessment of <i>BPV-1</i> Mediated Matrix Metalloproteinase Genes Deregulation in the In Vivo and In Vitro Models Designed to Explore Molecular Nature of Equine Sarcoids

    No full text
    Matrix metalloproteinases (MMPs) represent a family of enzymes capable of biocatalytically breaking down the structural and functional proteins responsible for extracellular matrix (ECM) integrity. This capability is widely used in physiological processes; however, imbalanced MMP activity can trigger the onset and progression of various pathological changes, including the neoplasmic transformation of different cell types. We sought to uncover molecular mechanisms underlying alterations in transcriptional profiles of genes coding for MMPs, which were comprehensively identified in equine adult dermal tissue bioptates, sarcoid-derived explants, and ex vivo expanded adult cutaneous fibroblast cell (ACFC) lines subjected to inducible oncogenic transformation into sarcoid-like cells. The results strongly support the hypothesis that the transcriptional activity of MMP genes correlates with molecular modifications arising in equine dermal cells during their conversion into sarcoid cells. The alterations in MMP transcription signatures occurs in both sarcoid tissues and experimentally transformed equine ACFC lines expressing BPV1-E4^E1 transgene, which were characterized by gene up- and down-regulation patterns

    A genome-wide detection of selection signatures in conserved and commercial pig breeds maintained in Poland

    No full text
    Abstract Background Identification of selection signatures can provide a direct insight into the mechanism of artificial selection and allow further disclosure of the candidate genes related to the animals’ phenotypic variation. Domestication and subsequent long-time selection have resulted in extensive phenotypic changes in domestic pigs, involving a number of traits, like behavior, body composition, disease resistance, reproduction and coat color. In this study, based on genotypes obtained from PorcineSNP60 Illumina assay we attempt to detect both diversifying and within-breed selection signatures in 530 pigs belonging to four breeds: Polish Landrace, Puławska, Złotnicka White and Złotnicka Spotted, of which the last three are a subject of conservative breeding and substantially represent the native populations. Results A two largely complementary statistical methods were used for signatures detection, including: pairwise FST and relative extended haplotype homozygosity (REHH) test. Breed-specific diversifying selection signals included several genes involved in processes connected with fertility, growth and metabolism which are potentially responsible for different phenotypes of the studied breeds. The diversifying selection signals also comprised PPARD gene that was previously found to have a large effect on the shape of the external ear in pigs or two genes encoding neuropeptide Y receptors (Y2 and Y5) involved in fat deposition and stress response which are important features differentiating the studied breeds. REHH statistics allowed detecting several within-breed selection signatures overlapping with genes connected with a range of functions including, among others: metabolic pathways, immune system response or implantation and development of the embryo. Conclusions The study provides many potential candidate genes with implication for traits selected in the individual breeds and gives strong basis for further studies aiming at identification of sources of variation among the studied pig breeds
    corecore