7 research outputs found

    Fault clearance and transmission system stability enhancement using unified power flow controller

    Get PDF
    Abstract: Fault current introduces voltage and reactive power imbalances which are major problems in power systems. This study shows the ability of Unified Power Flow Controller (UPFC) to clear a single line to ground fault and improves transmission system stability. The device under review is one of the most advanced classes of Flexible Alternating Current Transmission System (FACTS) devices. A 30-bus transmission line system is modelled with MATLAB/Simulink software. Two cases were simulated to evaluate the performance of UPFC. In Case 1, the 30-bus network system is modelled and simulated without a compensating device whilst Case 2, the system is modelled with UPFC. The system models are designed to have a single line to ground fault with resistance 0.010Ω and ground resistance of 0.001Ω occurring at bus 1. The fault is expected to cause instability in the system and be cleared after 0.04s in both cases. The simulated results of the two cases were compared to determine the performance of UPFC in improving the voltage stability and power profile of the system. The results show that UPFC has the ability of stabilizing voltage and power profile of transmission system. The study has thus, increased insight on the use of the device in transmission system stability and control

    Economic and Reliability Assessment of Hybrid PRO-RO Desalination Systems Using Brine for Salinity Gradient Energy Production

    No full text
    The energy requirements for desalination have made it an expensive process, however, it is still a viable and cost-effective means of water purification amidst freshwater scarcity. The management and disposal of brine is an external and extra desalination cost due to the effect of brine on the environment. The integration of Pressure Retarded Osmosis (PRO) with the Reverse Osmosis (RO) technique as modelled in this paper enhances brine management. The brine is fed back into the PRO unit to create a salinity gradient for water transfer via membrane and generate salinity gradient energy. The hybrid desalination model is designed to be powered by grid-tied offshore wind power. The use of wind power, a clean, renewable energy source devoid of carbon emission, as the main power source to drive the RO unit reduces the cost and effect of carbon emissions from the grid. The proposed model is assessed using Levelized cost of energy (LCOE), Annualized cost of the system (ACS), and cost of water (COW) as economic matrices. In contrast, loss of energy probability is used as a reliability matrix. Obtained results show a LCOE of 1.11 /kW,ACWof/kW, ACW of 110,456, COW of 0.13 $/m3, loss of energy probability of 0.341, a low total carbon emissions of 193,323 kgCO2-e, and zero brine production. Results show that the proposed model is economically viable, technically reliable, environmentally friendly, and generally sustainable

    Economic and Reliability Assessment of Hybrid PRO-RO Desalination Systems Using Brine for Salinity Gradient Energy Production

    No full text
    The energy requirements for desalination have made it an expensive process, however, it is still a viable and cost-effective means of water purification amidst freshwater scarcity. The management and disposal of brine is an external and extra desalination cost due to the effect of brine on the environment. The integration of Pressure Retarded Osmosis (PRO) with the Reverse Osmosis (RO) technique as modelled in this paper enhances brine management. The brine is fed back into the PRO unit to create a salinity gradient for water transfer via membrane and generate salinity gradient energy. The hybrid desalination model is designed to be powered by grid-tied offshore wind power. The use of wind power, a clean, renewable energy source devoid of carbon emission, as the main power source to drive the RO unit reduces the cost and effect of carbon emissions from the grid. The proposed model is assessed using Levelized cost of energy (LCOE), Annualized cost of the system (ACS), and cost of water (COW) as economic matrices. In contrast, loss of energy probability is used as a reliability matrix. Obtained results show a LCOE of 1.11 /kW,ACWof/kW, ACW of 110,456, COW of 0.13 $/m3, loss of energy probability of 0.341, a low total carbon emissions of 193,323 kgCO2-e, and zero brine production. Results show that the proposed model is economically viable, technically reliable, environmentally friendly, and generally sustainable

    Optimal Placement and Operation of FACTS Technologies in a Cyber-Physical Power System: Critical Review and Future Outlook

    No full text
    With the current transitioning and increasing complexity of power systems owing to the continuous integration of distributed generators (DGs) and Flexible AC Transmission Systems (FACTS), power system quality and security studies have extended to incorporate the impacts of these technologies. This paper presents a review of the operation and reliability impacts of FACTS technologies in improving power quality and security in modern Cyber-Physical Power Systems (CPPS). While introducing DG to the power system helps to decentralize the network for easy accessibility and enhances clean energy system, it creates new challenges such as harmonics, voltage instability, and frequency distortion. These challenges can be tackled with FACTS devices which are flexible and dynamic smart electronic controllers used to stabilize power system parameters to improve power quality and reliability. This paper examines the current state-of-the-art optimization techniques and artificial intelligence and/or computational techniques for optimal placement and operation of FACTS devices. This review highlights the generational advancement of FACTS technologies and the different objectives of optimal placement and operation of these devices. Moreover, the concept of CPPS is discussed with the potential utilization of distribution-FACTS (D-FACTS) devices for network security. Furthermore, a bibliometric analysis was carried out to show research trend of FACTS utilization. The result presents future trajectories for power utility industries and researchers interested in power system optimization and the application of FACTS technologies in smart power system networks. Some of the significant findings leads to proposed demand-side management for placement of DGs and FACTS technologies as a more strategic optimal system sizing to minimize cost. It was also concluded that future design of FACTS/D-FACTS devices must consider and appreciate interactions with the automated systems of CPPS to enhance effective integration. To this end, design modification of the operational configuration of these devices with sensors for real-time synchronized control and interaction with other CPPS technologies is an area that requires more research attention in the future

    Optimal Placement and Operation of FACTS Technologies in a Cyber-Physical Power System: Critical Review and Future Outlook

    No full text
    With the current transitioning and increasing complexity of power systems owing to the continuous integration of distributed generators (DGs) and Flexible AC Transmission Systems (FACTS), power system quality and security studies have extended to incorporate the impacts of these technologies. This paper presents a review of the operation and reliability impacts of FACTS technologies in improving power quality and security in modern Cyber-Physical Power Systems (CPPS). While introducing DG to the power system helps to decentralize the network for easy accessibility and enhances clean energy system, it creates new challenges such as harmonics, voltage instability, and frequency distortion. These challenges can be tackled with FACTS devices which are flexible and dynamic smart electronic controllers used to stabilize power system parameters to improve power quality and reliability. This paper examines the current state-of-the-art optimization techniques and artificial intelligence and/or computational techniques for optimal placement and operation of FACTS devices. This review highlights the generational advancement of FACTS technologies and the different objectives of optimal placement and operation of these devices. Moreover, the concept of CPPS is discussed with the potential utilization of distribution-FACTS (D-FACTS) devices for network security. Furthermore, a bibliometric analysis was carried out to show research trend of FACTS utilization. The result presents future trajectories for power utility industries and researchers interested in power system optimization and the application of FACTS technologies in smart power system networks. Some of the significant findings leads to proposed demand-side management for placement of DGs and FACTS technologies as a more strategic optimal system sizing to minimize cost. It was also concluded that future design of FACTS/D-FACTS devices must consider and appreciate interactions with the automated systems of CPPS to enhance effective integration. To this end, design modification of the operational configuration of these devices with sensors for real-time synchronized control and interaction with other CPPS technologies is an area that requires more research attention in the future

    Optimization of Voltage Security with Placement of FACTS Device Using Modified Newton–Raphson Approach: A Case Study of Nigerian Transmission Network

    No full text
    Power flow reliability, voltage security and transmission congestion management are paramount operational issues in a power system. Flexible AC transmission system (FACTS) controllers are suitable technologies that can provide compensation and dynamic control of power system transmission parameters to enhance effective performance and reliability. The interline power flow controller (IPFC), if optimally placed, can regulate the impedance of multiple lines to improve active power transfer capacity and voltage profile. This study examines the performance of IPFCs for voltage enhancement by suppressing fluctuation. A modified Newton–Raphson load flow problem with an incorporated IPFC variable has been formulated with the objective to improve voltage stability and maintain active power flow. The effectiveness of the proposed method was tested on the Nigerian 41 bus transmission network. The obtained result of the system with an IPFC placed at the weakest bus of the network was compared with Newton–Raphson load flow analysis of the same network without an IPFC. The results of load flow analysis for Case 1 (the system without an IPFC) showed that the transmission network without an IPFC had a real power loss of 4.699488 p.u., and reactive power loss of 4.467413 p.u., whereas the integration of an IPFC to the power flow formation in Case 2 resulted in the reduction in the transmission network’s overall losses to 0.55297 p.u. and −38.3329 p.u. The modified method proves effective as the power system network with an IPFC returns a more stable voltage profile and improves active power flow. In addition, this method, similar to all other mathematical optimization approaches, returns a strong accurate result but may be a drawback in terms of longer computational time compared with metaheuristic methods which are preferred for a larger network system
    corecore