38 research outputs found
Perspectives of Phage Therapy in Non-bacterial Infections
While the true value of phage therapy (PT) in human bacterial infections still awaits formal confirmation by clinical trials, new data have been accumulating indicating that in the future PT may be applied in the treatment of non-bacterial infections. Thus, “phage guests” may interact with eukaryotic cells and such interactions with cells of the immune system may protect human health (Guglielmi, 2017) and cause clinically useful immunomodulatory and anti-inflammatory effects when administered for therapeutic purposes (Górski et al., 2017; Van Belleghem et al., 2017). Recently, a vision of how these effects could translate into advances in novel means of therapy in a variety of human pathologies secondary to immune disturbances and allergy was presented (Górski et al., 2018a). In this article we present what is currently known about anti-microbial effects of phage which are not directly related to their antibacterial action and how these findings could be applied in the future in treatment of viral and fungal infections
Phage Therapy in Prostatitis: Recent Prospects
Prostatitis has various etiology including bacterial infection and dysregulated immunity; some of its forms remain a serious therapeutic challenge. Inflammation occurs in all forms of this disorder and is proposed to predispose to the development of prostate cancer (PC). There are reports that phage therapy is effective in chronic bacterial prostatitis. Recent findings suggest that phages not only eliminate bacteria, but also mediate immunomodulating (for example, anti-inflammatory) functions. The immunomodulating effects of phages could be beneficial in treating all forms of prostatitis and play some role in the prevention of the development of PC. As the etiological factors contributing to the majority of prostatitis cases remains largely unknown, and management options are often likewise limited, phage therapy merits further research as an attractive therapeutic option given its immunomodulating effects irrespective of the underlying causative factor(s)
The Role of Antibiotic Resistant A. baumannii in the Pathogenesis of Urinary Tract Infection and the Potential of Its Treatment with the Use of Bacteriophage Therapy
Acinetobacter baumannii are bacteria that belong to the critical priority group due to their carbapenems and third generation cephalosporins resistance, which are last-chance antibiotics. The growing multi-drug resistance and the ability of these bacteria to form biofilms makes it difficult to treat infections caused by this species, which often affects people with immunodeficiency or intensive care unit patients. In addition, most of the infections are associated with catheterization of patients. These bacteria are causative agents, inter alia, of urinary tract infections (UTI) which can cause serious medical and social problems, because of treatment difficulties as well as the possibility of recurrence and thus severely decrease patients’ quality of life. Therefore, a promising alternative to standard antibiotic therapy can be bacteriophage therapy, which will generate lower costs and will be safer for the treated patients and has real potential to be much more effective. The aim of the review is to outline the important role of drug-resistant A. baumannii in the pathogenesis of UTI and highlight the potential for fighting these infections with bacteriophage therapy. Further studies on the use of bacteriophages in the treatment of UTIs in animal models may lead to the use of bacteriophage therapy in human urinary tract infections caused by A. baumannii in the future
Animal Models in the Evaluation of the Effectiveness of Phage Therapy for Infections Caused by Gram-Negative Bacteria from the ESKAPE Group and the Reliability of Its Use in Humans
The authors emphasize how extremely important it is to highlight the role played by animal models in an attempt to determine possible phage interactions with the organism into which it was introduced as well as to determine the safety and effectiveness of phage therapy in vivo taking into account the individual conditions of a given organism and its physiology. Animal models in which phages are used make it possible, among other things, to evaluate the effective therapeutic dose and to choose the possible route of phage administration depending on the type of infection developed. These results cannot be applied in detail to the human body, but the knowledge gained from animal experiments is invaluable and very helpful. We would like to highlight how useful animal models may be for the possible effectiveness evaluation of phage therapy in the case of infections caused by gram-negative bacteria from the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species) group of pathogens. In this review, we focus specifically on the data from the last few years
Human β-Defensin 2 and Its Postulated Role in Modulation of the Immune Response
Studies described so far suggest that human β-defensin 2 is an important protein of innate immune response which provides protection for the human organism against invading pathogens of bacterial, viral, fungal, as well as parasitical origin. Its pivotal role in enhancing immunity was proved in infants. It may also be considered a marker of inflammation. Its therapeutic administration has been suggested for maintenance of the balance of systemic homeostasis based on the appropriate composition of the microbiota. It has been suggested that it may be an important therapeutic tool for modulating the response of the immune system in many inflammatory diseases, offering new treatment modalities. For this reason, its properties and role in the human body discussed in this review should be studied in more detail
What Are the Potential Benefits of Using Bacteriophages in Periodontal Therapy?
Periodontitis, which may result in tooth loss, constitutes both a serious medical and social problem. This pathology, if not treated, can contribute to the development of, among others, pancreatic cancer, cardiovascular diseases or Alzheimer’s disease. The available treatment methods are expensive but not always fully effective. For this reason, the search for and isolation of bacteriophages specific to bacterial strains causing periodontitis seems to be a great opportunity to target persistent colonization by bacterial pathogens and lower the use of antibiotics consequently limiting further development of antibiotic resistance. Furthermore, antimicrobial resistance (AMR) constitutes a growing challenge in periodontal therapy as resistant pathogens may be isolated from more than 70% of patients with periodontitis. The aim of this review is to present the perspective of phage application in the prevention and/or treatment of periodontitis alongside its complicated multifactorial aetiology and emphasize the challenges connecting composition and application of effective phage preparation
Possible Use of Bacteriophages Active against Bacillus anthracis and Other B. cereus Group Members in the Face of a Bioterrorism Threat
Anthrax is an infectious fatal disease with epidemic potential. Nowadays, bioterrorism using Bacillus anthracis is a real possibility, and thus society needs an effective weapon to neutralize this threat. The pathogen may be easily transmitted to human populations. It is easy to store, transport, and disseminate and may survive for many decades. Recent data strongly support the effectiveness of bacteriophage in treating bacterial diseases. Moreover, it is clear that bacteriophages should be considered a potential incapacitative agent against bioterrorism using bacteria belonging to B. cereus group, especially B. anthracis. Therefore, we have reviewed the possibility of using bacteriophages active against Bacillus anthracis and other species of the B. cereus group in the face of a bioterrorism threat
Two newly isolated Enterobacter-specific bacteriophages : biological properties and stability studies
In an era of antibiotic therapy crisis caused by spreading antimicrobial resistance, and when recurrent urinary tract infections constitute a serious social and medical problem, the isolation and complex characterization of phages with a potential therapeutic application represents a promising solution. It is an inevitable, and even a necessary direction in the development of current phage research. In this paper, we present two newly isolated myoviruses that show lytic activity against multidrug-resistant clinical isolates of Enterobacter spp. (E. cloacae, E. hormaechei, and E. kobei), the genomes of which belong to a poorly represented phage group. Both phages were classified as part of the Tevenvirinae subfamily (Entb_43 was recognized as Karamvirus and Entb_45 as Kanagawavirus). Phage lytic spectra ranging from 40 to 60% were obtained. The most effective phage-to-bacteria ratios (MOI = 0.01 and MOI = 0.001) for both the phage amplification and their lytic activity against planktonic bacteria were also estimated. Complete adsorption to host cells were obtained after about 20 min for Entb_43 and 10 min for Entb_45. The phage lysates retained their initial titers even during six months of storage at both −70 °C and 4 °C, whereas storage at 37 °C caused a complete loss in their activity. We showed that phages retained their activity after incubation with solutions of silver and copper nanoparticles, which may indicate possible synergistic antibacterial activity. Moreover, a significant reduction in phage titers was observed after incubation with a disinfectant containing octenidinum dihydrochloridum and phenoxyethanol, as well as with 70% ethanol. The observed maintenance of phage activity during incubation in a urine sample, along with other described properties, may suggest a therapeutic potential of phages at the infection site after intravesical administration
Bacteriophages in the gastrointestinal tract and their implications
Abstract The gut microbiota plays an essential role in health and disease of humans. Bacteriophages are the most abundant members of the gut virobiota and display great diversity. Phages can translocate through the mucosa to lymph and internal organs and play a role as regulators of the bacterial population in the gut. Increasing abundance of phages in the gut mucosa may reduce colonization by bacteria. Moreover, phages may have an immunomodulatory role in the immune response in the human gut. The role of phages in inflammatory bowel disease (IBD) remains unknown. Phages may take part in the development of IBD, but there are also data suggesting the protective role of phages in the gut of patients with IBD. Furthermore, recent data suggest that phages may mediate the beneficial effects of fecal microbiota transplantation (FMT). Therefore, evidence is accumulating to highlight the protective immunomodulating activity of the gut phages