9 research outputs found

    Synthetic Data Generation for Automatic Segmentation of X-ray Computed Tomography Reconstructions of Complex Microstructures

    Get PDF
    The greatest challenge when using deep convolutional neural networks (DCNNs) for automatic segmentation of microstructural X-ray computed tomography (XCT) data is the acquisition of sufficient and relevant data to train the working network. Traditionally, these have been attained by manually annotating a few slices for 2D DCNNs. However, complex multiphase microstructures would presumably be better segmented with 3D networks. However, manual segmentation labeling for 3D problems is prohibitive. In this work, we introduce a method for generating synthetic XCT data for a challenging six-phase Al-Si alloy composite reinforced with ceramic fibers and particles. Moreover, we propose certain data augmentations (brightness, contrast, noise, and blur), a special in-house designed deep convolutional neural network (Triple UNet), and a multi-view forwarding strategy to promote generalized learning from synthetic data and therefore achieve successful segmentations. We obtain an overall Dice score of 0.77. Lastly, we prove the detrimental effects of artifacts in the XCT data on achieving accurate segmentations when synthetic data are employed for training the DCNNs. The methods presented in this work are applicable to other materials and imaging techniques as well. Successful segmentation coupled with neural networks trained with synthetic data will accelerate scientific output

    Residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion as a function of process atmosphere and component design

    Get PDF
    The influence of the process gas, laser scan speed, and sample thickness on the build-up of residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion was studied. Pure argon and helium, as well as a mixture of those (30% helium), were employed to establish process atmospheres with a low residual oxygen content of 100 ppm O-2. The results highlight that the subsurface residual stresses measured by X-ray diffraction were significantly lower in the thin samples (220 MPa) than in the cuboid samples (645 MPa). This difference was attributed to the shorter laser vector length, resulting in heat accumulation and thus in-situ stress relief. The addition of helium to the process gas did not introduce additional subsurface residual stresses in the simple geometries, even for the increased scanning speed. Finally, larger deflection was found in the cantilever built under helium (after removal from the baseplate), than in those produced under argon and an argon-helium mixture. This result demonstrates that complex designs involving large scanned areas could be subjected to higher residual stress when manufactured under helium due to the gas\u27s high thermal conductivity, heat capacity, and thermal diffusivity

    Micromechanical behavior of annealed Ti-6Al-4V produced by Laser Powder Bed Fusion

    Get PDF
    the micromechanical behavior of an annealed ti-6al-4V material produced by laser Powder Bed Fusion was characterized by means of in-situ synchrotron X-ray diffraction during a tensile test. the lattice strain evolution was obtained parallel and transversal to the loading direction. the elastic constants were determined and compared with the conventionally manufactured alloy. in the plastic regime, a lower plastic anisotropy exhibited by the lattice planes was observed along the load axis (parallel to the building direction) than in the transverse direction. also, the load transfer from α to β phase was observed, increasing global ductility of the material. The material seems to accumulate a significant amount of intergranular strain in the transverse direction

    Synthetic Data Generation for Automatic Segmentation of X-ray Computed Tomography Reconstructions of Complex Microstructures

    No full text
    The greatest challenge when using deep convolutional neural networks (DCNNs) for automatic segmentation of microstructural X-ray computed tomography (XCT) data is the acquisition of sufficient and relevant data to train the working network. Traditionally, these have been attained by manually annotating a few slices for 2D DCNNs. However, complex multiphase microstructures would presumably be better segmented with 3D networks. However, manual segmentation labeling for 3D problems is prohibitive. In this work, we introduce a method for generating synthetic XCT data for a challenging six-phase Al–Si alloy composite reinforced with ceramic fibers and particles. Moreover, we propose certain data augmentations (brightness, contrast, noise, and blur), a special in-house designed deep convolutional neural network (Triple UNet), and a multi-view forwarding strategy to promote generalized learning from synthetic data and therefore achieve successful segmentations. We obtain an overall Dice score of 0.77. Lastly, we prove the detrimental effects of artifacts in the XCT data on achieving accurate segmentations when synthetic data are employed for training the DCNNs. The methods presented in this work are applicable to other materials and imaging techniques as well. Successful segmentation coupled with neural networks trained with synthetic data will accelerate scientific output

    X-ray Computed Tomography Procedures to Quantitatively Characterize the Morphological Features of Triply Periodic Minimal Surface Structures

    No full text
    Additively manufactured (AM) metallic sheet-based Triply Periodic Minimal Surface Structures (TPMSS) meet several requirements in both bio-medical and engineering fields: Tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some challenges related to quality control, which can prevent their successful application. In fact, the optimization of the AM process is impossible without considering structural characteristics as manufacturing accuracy, internal defects, as well as surface topography and roughness. In this study, the quantitative non-destructive analysis of TPMSS manufactured from Ti-6Al-4V alloy by electron beam melting was performed by means of X-ray computed tomography (XCT). Several advanced image analysis workflows are presented to evaluate the effect of build orientation on wall thicknesses distribution, wall degradation, and surface roughness reduction due to the chemical etching of TPMSS. It is shown that the manufacturing accuracy differs for the structural elements printed parallel and orthogonal to the manufactured layers. Different strategies for chemical etching show different powder removal capabilities and both lead to the loss of material and hence the gradient of the wall thickness. This affects the mechanical performance under compression by reduction of the yield stress. The positive effect of the chemical etching is the reduction of the surface roughness, which can potentially improve the fatigue properties of the components. Finally, XCT was used to correlate the amount of retained powder with the pore size of the functionally graded TPMSS, which can further improve the manufacturing process
    corecore