83 research outputs found
Polarization-independent anapole response of a trimer-based dielectric metasurface
The phenomenon of anapole has attracted considerable attention in the field of metamaterials as a possible realization of radiationless objects. We comprehensively study this phenomenon in the cluster-based systems of dielectric particles by considering conditions of anapole manifestation in both single trimers of disk-shaped particles and metamaterial composed on such trimers. Our analytical approach is based on the multipole decomposition method and the secondary multipole decomposition technique. They allow us to associate the anapole with the multipole moments of the trimer and the separate multipole moments of its constitutive particles. The manifestation of anapole in a two-dimensional metamaterial (metasurface) is confirmed by checking the resonant states in the reflected field as well as from the electromagnetic near-field patterns obtained from the full-wave numerical simulation. It is demonstrated that the anapole excitation in trimers results in the polarization-independent suppression of reflection with the resonant enhancement of local electromagnetic fields in the metasurface. Finally, experimental verification of the theoretical results is presented and discussed
Recommended from our members
Analytical model of resonant electromagnetic dipole-quadrupole coupling in nanoparticle arrays
An analytical model for investigations of multipole coupling effects in the finite and infinite nanoparticle arrays supporting electromagnetic resonances is presented and discussed. This model considers the contributions of both electric and magnetic modes excited in the nanoparticles, including electric and magnetic dipoles and electric and magnetic quadrupoles. The magnetic quadrupole propagator (Green's tensor) that describes the electromagnetic field generated by a point magnetic quadrupole source in all wave zones is derived. As an example, we apply the developed model to study infinite two-dimensional rectangular periodic arrays of spherical silicon nanoparticles supporting the dipole and quadrupole resonant responses. The correctness and accuracy of the analytical model are confirmed by the agreement of its results with the results of full-wave numerical simulations. Using the developed model, we show the electromagnetic coupling between electric dipole and magnetic quadrupole moments as well as between magnetic dipole and electric quadrupole moments even for the case of an infinite rectangular periodic array of spherical nanoparticles. The strong suppression of the dipole or quadrupole moment due to the coupling effects is demonstrated and discussed for spherical nanoparticle arrays. The analytical expressions for the reflection and transmission coefficients written with the effective dipole and quadrupole polarizabilities are derived for normal light incidences and zero-order diffraction. The derived expressions are applied to explain the lattice anapole (invisibility) states when the incident light is transmitted unperturbed through the silicon nanoparticle array. The important role of dipole and quadrupole excitations in scattering compensation resulting in the lattice anapole effect is explicitly demonstrated. The presented approach can be used for designing metasurfaces and further utilizing them in developing ultrathin functional optical elements.Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD [EXC 2122, 390833453]; Air Force Office of Scientific Research [FA9550-19-1-0032]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Multiresonant all-dielectric metasurfaces based on high-order multipole coupling in the visible
In many cases, optical metasurfaces are studied in the single-resonant regime. However, a multiresonant behavior can enable multiband devices with reduced footprint, and is desired for applications such as display pixels, multispectral imaging and sensing. Multiresonances are typically achieved by engineering the array lattice (e.g., to obtain several surface lattice resonances), or by adopting a unit cell hosting one (or more than one) nanostructure with some optimized geometry to support multiple resonances. Here, we present a study on how to achieve multiresonant metasurfaces in the visible spectral range by exploiting high-order multipoles in dielectric (e.g., diamond or titanium dioxide) nanostructures. We show that in a simple metasurface (for a fixed particle and lattice geometry) one can achieve triple resonance occurring nearly at RGB (red, green, and blue) wavelengths. Based on analytical and numerical analysis, we demonstrate that the physical mechanism enabling the multiresonance behavior is the lattice induced coupling (energy exchange) between high-order Mie-type multipoles moments of the metasurface’s particles. We discuss the influence on the resonances of the metasurface’s finite size, surrounding material, polarization, and lattice shape, and suggest control strategies to enable the optical tunability of these resonances
Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range
Resonant magnetic energy accumulation is theoretically investigated in the optical and near-infrared regions. It is demonstrated that the silicon nanocylinders with and without coaxial through holes can be used for the control and manipulation of optical magnetic fields, providing up to 26-fold enhancement of these fields for the considered system. Magnetic field distributions and dependence on the parameters of nanocylinders are revealed at the wavelengths of magnetic dipole and quadrupole resonances responsible for the enhancement. The obtained results can be applied, for example, to designing nanoantennas for the detection of atoms with magnetic optical transitions
Transition between radial and toroidal orders in a trimer-based magnetic metasurface
The change in the arrangement of magnetic dipole moments in a magnetic
metasurface, due to the influence of an external static magnetic field, is
discussed. Each meta-atom of the metasurface is composed of three identical
disk-shaped resonators (trimer) made of magnetically saturated ferrite. To
provide physical insight, full-wave numerical simulations of the near-fields
and transmission characteristics of the metasurface are complemented by the
theoretical description based on the multipole decomposition method. With these
methods, the study of eigenmodes and scattering conditions of a single magnetic
resonator, trimer, and their array forming the metasurface is performed. It is
found that the magnetic dipole-based collective hybrid mode of the trimer can
be gradually transformed from the radial (pseudomonopole) to azimuthal
(toroidal) order and vice versa by varying the bias magnetic field strength.
This is because the magnetic dipole moment of each individual disk constituting
the trimer undergoes rotation as the bias magnetic field strength changes. This
transition between two orders is accompanied by various patterns of
localization of the electric field inside the meta-atoms. Due to the unique
field configuration of these modes, the proposed metasurface can be considered
for designing magnetic field sensors and nonreciprocal devices.Comment: 14 pages, 8 figure
Core-shell particles as efficient broadband absorbers in infrared optical range
We demonstrate that efficient broadband absorption of infrared radiation can be obtained with deeply subwavelength spherical dielectric particles covered by a thin metal layer. Considerations based on Mie theory and the quasi-static approximation reveal a wide range of configuration parameters, within which the absorption cross section reaches the geometrical one and exceeds more than by order of magnitude the scattering cross section in the infrared spectrum. We show that the absorption is not only efficient but also broadband with the spectral width being close to the resonant wavelength corresponding to the maximum of the absorption cross section. We obtain a simple analytical expression for the absorption resonance that allows one to quickly identify the configuration parameters ensuring strong infrared absorption in a given spectral range. Relation between the absorption resonance and excitation of the short-range surface palsmon modes in the metal shell of particles is demonstrated and discussed. Our results can be used as practical guidelines for realization of efficient broadband infrared absorbers of subwavelength sizes desirable in diverse applications. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
- …