4 research outputs found
Coronal heating distribution due to low-frequency wave-driven turbulence
The heating of the lower solar corona is examined using numerical simulations
and theoretical models of magnetohydrodynamic turbulence in open magnetic
regions. A turbulent energy cascade to small length scales perpendicular to the
mean magnetic field can be sustained by driving with low-frequency Alfven waves
reflected from mean density and magnetic field gradients. This mechanism
deposits energy efficiently in the lower corona, and we show that the spatial
distribution of the heating is determined by the mean density through the
Alfven speed profile. This provides a robust heating mechanism that can explain
observed high coronal temperatures and accounts for the significant heating
(per unit volume) distribution below two solar radius needed in models of the
origin of the solar wind. The obtained heating per unit mass on the other hand
is much more extended indicating that the heating on a per particle basis
persists throughout all the lower coronal region considered here.Comment: 19 pages, 5 figures. Accepted for publication in Ap
Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux
A fully adaptive finite volume multiresolution scheme for one-dimensional
strongly degenerate parabolic equations with discontinuous flux is presented.
The numerical scheme is based on a finite volume discretization using the
Engquist--Osher approximation for the flux and explicit time--stepping. An
adaptivemultiresolution scheme with cell averages is then used to speed up CPU
time and meet memory requirements. A particular feature of our scheme is the
storage of the multiresolution representation of the solution in a dynamic
graded tree, for the sake of data compression and to facilitate navigation.
Applications to traffic flow with driver reaction and a clarifier--thickener
model illustrate the efficiency of this method