2 research outputs found

    Overcoming ecological feedbacks in seagrass restoration

    Get PDF
    Overcoming ecological feedbacks is a major limiting factor reducing the success of many seagrass restoration projects. Negative feedbacks occur when biotic or abiotic conditions of a site are changed sufficiently after the loss of seagrass to prevent its recovery, even after the original stressors are remediated. While negative feedbacks in seagrass restoration are common, there remain limited studies of ways to reduce them and kick-start the necessary positive feedbacks to promote recovery. We used field and laboratory experiments to investigate key ecological feedbacks in seagrass (Zostera marina) restoration by testing the role of hessian bags and seed burial in reducing seed predation and promoting plant development. We used a double-hurdle model approach to predict “seagrass emergence success” and “seagrass growth success” across planted field plots. We found that planting seeds in hessian bags and burying them in the sediment improved the likelihood of seeds developing into mature plants. We recorded an average 13-fold increase in shoot density for seeds planted in buried bags relative to raked furrows. This could be the combined result of reduced predation as well as bags mimicking emergent traits of mature seagrass to withstand physical impacts. We supplement these findings with laboratory evidence that hessian bags provide protection from predation by green shore crabs. Overall, we found a low and variable success rate for seed-based restoration and indicate other feedbacks in the system beyond those we controlled. However, we show that small methodological changes can help overcome some key feedbacks and improve restoration success

    Demersal Fish Assemblages in NE Atlantic Seagrass and Kelp

    No full text
    Global fisheries are in decline, calling for urgent evidence-based action. One such action is the identification and protection of fishery-associated habitats such as seagrass meadows and kelp forests, both of which have suffered long-term loss and degradation in the North Atlantic region. Direct comparisons of the value of seagrass and kelp in supporting demersal fish assemblages are largely absent from the literature. Here, we address this knowledge gap. Demersal fish were sampled using a baited camera to test for differences between habitats in (1) the species composition of the fish assemblages, (2) the total abundance and species richness of fishes, and (3) the abundances of major commercial species. Seagrass and kelp-associated fish assemblages formed two significantly distinct groupings, which were driven by increased whiting (Merlangius merlangus) and dogfish (Scyliorhinus canicula) presence in seagrass and higher abundances of pollock (Pollachius pollachius) and goby (Gobiusculus flavescens) in kelp. The abundance, diversity, and species richness did not change significantly between the two habitats. We conclude that seagrass and kelp do support unique demersal fish assemblages, providing evidence that they have different ecological value through their differing support of commercial fish species. Thus, this study improves the foundation for evidence-based policy changes
    corecore