10 research outputs found

    Микробная доступность органического вещества в донных отложениях арктических озер: лабораторный инкубационный эксперимент

    Get PDF
    The water ecosystems of the Arctic region are most vulnerable to modern climatic changes since the global biogeochemical processes mostly occur on the territories of the permafrost zone. Aquatic ecosystems show a high degree of sensitivity to climatic changes; both in these and in other ecosystems, the biogeochemical processes are intense. These water bodies are located in the permafrost zone, which is vulnerable to temperature increases. The paper gives new insights into the fundamental research question of how fast the organic matter of thawing permafrost can be converted to greenhouse gases emitted into the atmosphere (CO2, CH4). We aimed to assess the microbial response and the associated release of CO2 and CH4 from the Arctic lakes in response to temperature increase. We investigated lakes located in the Lena River delta in the Samoylov Island, Russia, at 72° 22′ N, 126° 28′ E. Bottom sediments from three thermokarst and three oxbow lakes were anaerobically incubated in the laboratory at two temperature regimes (at 4 °C and at 25 °C). All the oxbow lakes have shown similar dynamics of methane emission both at low temperatures (4 °C) and at high temperatures (25 °C). The shift of carbon isotopic composition in methane has indicated that methane is emitted in all the oxbow lakes with a similar composition of microbial communities. In the thermokarst lakes, the emission of methane in the sediments proceeded differently at low and at high temperatures. These results have indicated a dissimilar composition of methanogenic / methanotrophic populations in the thermokarst and oxbow lakes. In both cases, the temperature increase caused a growth in methane emission from the sediments of the Arctic lakes. The thermokarst lakes will make a greater contribution to methane emission than the oxbow lakes. Thus, it is believed that the emission of methane from the thermokarst lakes will rise from 6 to 46 times due to ambient temperature increase. Methane emission from the oxbow lakes will grow from 1.8 to 7.6 times. Our results suggest that with the global warming both thermokarst and oxbow lakes could become a great source of methane emission into the atmosphere.В работе представлены новые данные, касающиеся фундаментального вопроса о скорости преобразования органического вещества, захороненного в вечной мерзлоте, в парниковые газы (CO2, CH4 ). Основной задачей являлось определение микробной реакции в ответ на повышение температуры и связанной с этим процессом эмиссии CO2 и CH4 из арктических озер. В работе изучались озера, расположенные в дельте реки Лены на острове Самойловский, Россия (72° 22′ с. ш., 126° 28′ в. д.). Были проведены лабораторные анаэробные инкубационные эксперименты донных отложений из трех термокарстовых и трех старичных озер при двух температурных режимах (4 °C и 25 °C). Осадки старичных озер показали сходную динамику эмиссии метана, как при низких (4 °C), так и при высоких температурах (25 °C). В термокарстовых озерах, в экспериментах при низких и высоких температурах, эмиссия метана в отложениях протекала с использованием несхожих метаболических путей. Изотопное смещение углерода в метане указывало на различающийся состав метаногенных/метанотрофных популяций в термокарстовых и старичных озерах. В обоих случаях повышение температуры приводило к увеличению высвобождения метана из донных отложений арктических озер. В сравнении со старичными озерами, термокарстовые озера внесут больший вклад в эмиссию метана. Так, эмиссия метана из термокарстовых озер предположительно увеличится от 6 до 46 раз за счет повышения температуры окружающей среды, а из старичных озер — от 1,8 до 7,6 раз. Согласно результатам данного исследования, в условиях глобального потепления климата и термокарстовые и старичные озера могут стать значимыми источниками поступления метана в атмосферу Земли

    Microbiological methane emission in the boreal ecosystems of cryogenic Siberia zones

    No full text
    Carbon dioxide is known to be the major contributor to the green-house effect;however, its annual increase in the atmosphere has slowed down markedly inrecent years. The methane (CH4) concentration in the atmosphere has morethan doubled over the last 300 years and is currently increasing at an annualrate of 0.8 to 1.0% per year [Dedysh , 2002].The arctic and sub-arctic zones of Siberia are considered to be among the mostactive atmospheric methane sources. The CH4 emission is controlled by thedegree of drowning, the temperature, the amount of organic matter, thevegetation and the methanogenesis and methanotrophic processes. As a ruleon the territory of Siberia the emission of modern biogenic methane, which isactive source of atmospheric methane occurred from the natural ecotopes[Galchenko, 2001]. A considerable amount of methane does not participate inthe contemporary biogeochemical cycle, since it is stocked in the permafrosttogether with living anaerobic microorganisms including methane-producingbacteria (Archaea). Methane production can occur at below-zero temperatures (down to 16.5oC) in permafrost depositions [Rivkina et al., 2006; Gilichinsky,2002; Wright et al., 1998]. We have carried out ourinvestigations in the two Siberian regions which are located in the permafrostzone. There are the Central Evenkia (forest ecosystem) and Lena Delta (tundraecosystem). The general aim is the estimation of microbial emission and theCH4 absorption of the cryogenic soils simultaneously using of the unifiedmethodology. We used the method of closed chambers (Wagner et al., 2003)for fixing the methane release with the surface of the soil during July andAugust.It was determined that from11.7 to 50.4 mg/m2/day of CH4 was risen with thesoil surface in the tundra ecosystem. The difference in the methane fluxesbetween of the polygon centre and rims was 1.7-2.8 times. The methane fluxvalue was from 8.9 to 34.7 mg/m2/day in the forest ecosystem and depended onthe amount of precipitations incoming from the atmosphere to the soil. Theobtained data permit to tell about the similarity of microbial processes ofmethane transformation, occurring in the mineral soil layer of the bothecosystems. The methane flux in tundra ecosystem was 2.2 times higher thanin the forest ecosystem.The presence of archaeabacteria was determined by the molecular geneticmethod. Methanogenic archaea belonging to the uncultivated Rice cluster II ofEuryarcheota was dominant in our samples and another big archaebacteriagroup belonged to the uncultivated Rice Cluster IV of Crenarcheota

    The Profile of Circulating Blood microRNAs in Outpatients with Vulnerable and Stable Atherosclerotic Plaques: Associations with Cardiovascular Risks

    No full text
    Non-coding RNAs reflect many biological processes in the human body, including athero-sclerosis. In a cardiology outpatient department cohort (N = 83), we aimed to compare the levels of circulating microRNAs in groups with vulnerable plaques (N = 22), stable plaques (N = 23) and plaque-free (N = 17) depending on coronary computed tomography angiography and to evaluate associations of microRNA levels with calculated cardiovascular risks (CVR), based on the SCORE2 (+OP), ACC/AHA, ATP-III and MESA scales. Coronary computed tomography was performed on a 640-slice computed tomography scanner. Relative plasma levels of microRNA were assessed via a real-time polymerase chain reaction. We found significant differences in miR-143-3p levels (p = 0.0046 in plaque-free vs. vulnerable plaque groups) and miR-181b-5p (p = 0.0179 in stable vs. vulnerable plaques groups). Analysis of microRNA associations with CVR did not show significant differences for SCORE2 (+OP) and ATPIII scales. MiR-126-5p and miR-150-5p levels were significantly higher (p < 0.05) in patients with ACC/AHA risk >10% and miR-145-5p had linear relationships with ACC/AHA score (adjusted p = 0.0164). The relative plasma level of miR-195 was higher (p < 0.05) in patients with MESA risk > 7.5% and higher (p < 0.05) in patients with zero coronary calcium index (p = 0.036). A linear relationship with coronary calcium was observed for miR-126-3p (adjusted p = 0.0484). A positive correlation with high coronary calcium levels (> 100 Agatson units) was found for miR-181-5p (p = 0.036). Analyzing the biological pathways of these microRNAs, we suggest that miR-143-3p and miR-181-5p can be potential markers of the atherosclerosis process. Other miRNAs (miR-126-3p, 126-5p, 145-5p, 150-5p, 195-5p) can be considered as potential cardiovascular risk modifiers, but it is necessary to validate our results in a large prospective trial
    corecore