111 research outputs found

    The Occurrence Rate of Quiescent Radio Emission for Ultracool Dwarfs using a Generalized Semi-Analytical Bayesian Framework

    Full text link
    We present a generalized analytical Bayesian framework for calculating the occurrence rate of steady emission (or absorption) in astrophysical objects. As a proof-of-concept, we apply this framework to non-flaring quiescent radio emission in ultracool (≀\leq M7) dwarfs. Using simulations, we show that our framework recovers the simulated radio occurrence rate to within 1-5% for sample sizes of 10-100 objects when averaged over an ensemble of trials and simulated occurrence rates for our assumed luminosity distribution models. In contrast, existing detection rate studies may under-predict the simulated rate by 51-66% because of sensitivity limits. Using all available literature results for samples of 82 ultracool M dwarfs, 74 L dwarfs, and 23 T/Y dwarfs, we find that the maximum-likelihood quiescent radio occurrence rate is between 15βˆ’4+415^{+4}_{-4} - 20βˆ’5+620^{+6}_{-5}%, depending on the luminosity prior that we assume. Comparing each spectral type, we find occurrence rates of 17βˆ’7+917^{+9}_{-7} - 25βˆ’10+1325^{+13}_{-10}% for M dwarfs, 10βˆ’4+510^{+5}_{-4} - 13βˆ’5+713^{+7}_{-5}% for L dwarfs, and 23βˆ’9+1123^{+11}_{-9} - 29βˆ’11+1329^{+13}_{-11}% for T/Y dwarfs. We rule out potential selection effects and speculate that age and/or rotation may account for tentative evidence that the quiescent radio occurrence rate of L dwarfs may be suppressed compared to M and T/Y dwarfs and phenomenon. Finally, we discuss how we can harness our occurrence rate framework to carefully assess the possible physics that may be contributing to observed occurrence rate trends

    A Stellar Census of the Tucana-Horologium Moving Group

    Full text link
    We report the selection and spectroscopic confirmation of 129 new late-type (K3-M6) members of the Tuc-Hor moving group, a nearby (~40 pc), young (~40 Myr) population of comoving stars. We also report observations for 13/17 known Tuc-Hor members in this spectral type range, and that 62 additional candidates are likely to be unassociated field stars; the confirmation frequency for new candidates is therefore 129/191 = 67%. We have used RVs, Halpha emission, and Li6708 absorption to distinguish contaminants and bona fide members. Our expanded census of Tuc-Hor increases the known population by a factor of ~3 in total and by a factor of ~8 for members with SpT>K3, but even so, the K-M dwarf population of Tuc-Hor is still markedly incomplete. The spatial distribution of members appears to trace a 2D sheet, with a broad distribution in X and Y, but a very narrow distribution (+/-5 pc) in Z. The corresponding velocity distribution is very small, with a scatter of +/-1.1 km/s about the mean UVW velocity. We also show that the isochronal age (20--30 Myr) and the lithium depletion age (40 Myr) disagree, following a trend seen in other PMS populations. The Halpha emission follows a trend of increasing EW with later SpT, as seen for young clusters. We find that members have been depleted of lithium for spectral types of K7.0-M4.5. Finally, our purely kinematic and color-magnitude selection procedure allows us to test the efficiency and completeness for activity-based selection of young stars. We find that 60% of K-M dwarfs in Tuc-Hor do not have ROSAT counterparts and would be omitted in Xray selected samples. GALEX UV-selected samples using a previously suggested criterion for youth achieve completeness of 77% and purity of 78%. We suggest new selection criteria that yield >95% completeness for ~40 Myr populations.(Abridged)Comment: Accepted to AJ; 28 pages, 12 figures, 5 tables in emulateapj forma
    • …
    corecore