6 research outputs found

    Multipurpose stabilization of the advanced marine surface crafts

    No full text
    Advanced marine surface crafts, such as SWATHs, catamarans or hovercrafts become more and more popular for a great range of various tasks. They usually operate at much higher speed than conventional ships. Moreover, in the open sea there are a lot of requirements and restrictions concerning the quality of such crafts’ dynamics, especially in case of the wind or waves. This paper considers application of the control law with a special multipurpose structure for autopilot design for amphibious air cushion vehicles. Such control law allows to decompose the autopilot task into simpler optimization subtasks. Efficiency of this approach is shown in the task of stabilizing yaw angle of the air cushion vehicle in the different weather conditions

    Multipurpose stabilization of the advanced marine surface crafts

    No full text
    Advanced marine surface crafts, such as SWATHs, catamarans or hovercrafts become more and more popular for a great range of various tasks. They usually operate at much higher speed than conventional ships. Moreover, in the open sea there are a lot of requirements and restrictions concerning the quality of such crafts’ dynamics, especially in case of the wind or waves. This paper considers application of the control law with a special multipurpose structure for autopilot design for amphibious air cushion vehicles. Such control law allows to decompose the autopilot task into simpler optimization subtasks. Efficiency of this approach is shown in the task of stabilizing yaw angle of the air cushion vehicle in the different weather conditions

    Thyristor Voltage Regulator Experimental Research

    No full text
    The article is devoted to the thyristor voltage regulator (TVR) development. The TVR purpose is to control power flows and regulate voltage in 6-20 kV distribution electrical networks (DEN). The principle of TVR operation is based on the plus EMF (or minus EMF) introduction into power line when the shared use of longitudinal (change of magnitude) and transverse (change of phase) voltage regulation. The description of the TVR prototype is given. The TVR prototype consists of a 0.4 kV thyristor switches, power transformers (shunt and serial) and a 6 kV switchgear. The TVR has a two-level control system (CS). The TVR prototype experimental research was conducted in four stages: check of power equipment, first level CS research, second level CS research, prototype tests as a whole. The connection diagrams (thyristor switches unit, transformer and measuring equipment) and contact connections reliability were checked when the power part was tested. A qualitative characteristic of the input and output signals was obtained when testing the first level CS. It is found that the thyristor control pulses are formed according to the developed algorithm. The correctness of control system algorithms, executed and transmitted commands, passed and received data was confirmed as a result of the second level CS tests. The TVR research results indicate that the prototype provides the smoothness and specified accuracy of voltage regulation in all modes. The control range of the output voltage relative to the input was ±10%. The discreteness of regulation did not exceed 1.5%. The range of change in the shift angle of the output voltage relative to the input was ±5°. Research confirmed the TVR ES operability and its readiness for trial operation

    Study of the Fabrication Technology of Hybrid Microfluidic Biochips for Label-Free Detection of Proteins

    No full text
    A study of the peculiarities and a comparative analysis of the technologies used for the fabrication of elements of novel hybrid microfluidic biochips for express biomedical analysis have been carried out. The biochips were designed with an incorporated microfluidic system, which enabled an accumulation of the target compounds in a biological fluid to be achieved, thus increasing the biochip system’s sensitivity and even implementing a label-free design of the detection unit. The multilevel process of manufacturing a microfluidic system of a given topology for label-free fluorometric detection of protein structures is presented. The technological process included the chemical modification of the working surface of glass substrates by silanization using (3-aminopropyl) trimethoxysilane (APTMS), formation of the microchannels, for which SU-8 technologies and a last generation dry film photoresist were studied and compared. The solid-state phosphor layers were deposited using three methods: drop application; airbrushing; and mechanical spraying onto the adhesive surface. The processes of sealing the system, installing input ports, and packaging using micro-assembly technologies are described. The technological process has been optimized and the biochip was implemented and tested. The presented system can be used to design novel high-performance diagnostic tools that implement the function of express detection of protein markers of diseases and create low-power multimodal, highly intelligent portable analytical decision-making systems in medicine
    corecore