21 research outputs found

    pH (Low) Insertion Peptide (pHLIP) Targets Ischemic Myocardium

    Get PDF
    The pH (low) insertion peptide (pHLIP) family enables targeting of cells in tissues with low extracellular pH. Here, we show that ischemic myocardium is targeted, potentially opening a new route to diagnosis and therapy. The experiments were performed using two murine ischemia models: regional ischemia induced by coronary artery occlusion and global low-flow ischemia in isolated hearts. In both models, pH-sensitive pHLIPs [wild type (WT) and Var7] or WT-pHLIP–coated liposomes bind ischemic but not normal regions of myocardium, whereas pH-insensitive, kVar7, and liposomes coated with PEG showed no preference. pHLIP did not influence either the mechanical or the electrical activity of ischemic myocardium. In contrast to other known targeting strategies, the pHLIP-based binding does not require severe myocardial damage. Thus, pHLIP could be used for delivery of pharmaceutical agents or imaging probes to the myocardial regions undergoing brief restrictions of blood supply that do not induce irreversible changes in myocytes

    Increased Cell–Cell Coupling Increases Infarct Size and Does not Decrease Incidence of Ventricular Tachycardia in Mice

    Get PDF
    Increasing connexin43 (Cx43) gap junctional conductance as a means to improve cardiac conduction has been proposed as a novel antiarrhythmic modality. Yet, transmission of molecules via gap junctions may be associated with increased infarct size. To determine whether maintaining open gap junction channels impacts on infarct size and induction of ventricular tachycardia (VT) following coronary occlusion, we expressed the pH- and voltage-independent connexin isoform connexin32 (Cx32) in ventricle and confirmed Cx32 expression. Wild-type (WT) mice injected with adenovirus-Cx32 (Cx32inj) were examined following coronary occlusion to determine infarct size and inducibility of VT. There was an increased infarct size in Cx32inj hearts as compared to WT (WT 22.9 ± 4%; Cx32inj 44.3 ± 5%; p < 0.05). Programmed electrical stimulation showed no difference in VT inducibility in WT and Cx32inj mice (VT was reproducibly inducible in 55% of shams and 50% of Cx32inj mice (p > 0.05). Following coronary occlusion, improving cell–cell communication increased infarct size, and conferred no antiarrhythmic benefit

    Repolarization gradients in the intact heart: Transmural or apico-basal?

    No full text
    Controversies regarding the genesis of the T wave in the electrocardiogram and the role of midmural M cells in the intact heart include: whether transmural or apico-basal gradients in repolarization times are responsible for the T wave. whether M cells are involved in creating a transmural repolarization gradient thereby contributing to drug-induced Torsade de Pointes. In normal, intact canine and human hearts there is no significant transmural gradient in repolarization times. The T wave results primarily from apico-basal differences in repolarization times. Also, in the intact heart there is no midmural region of prolonged action potential duration. This contrasts with isolated preparations, such as the wedge preparation or myocardial slices or disaggregated myocytes in which M cells, with action potentials longer than those of endocardial and epicardial myocardium, can be found. This disparity in action potential duration probably results from partial uncoupling of myocardial cells in the regions where measurements are made, e.g., the cut surface of a wedge preparation. In regions of a wedge where cellular coupling is normal, or in isolated myocardial bundles or sheets, no evidence for M cells is detected. In some wedge preparations, a drug-induced large transmural repolarization gradient, involving M cells, can lead to Torsade de Pointes, possibly caused by so-called phase two reentry. In contrast, when a gradient of repolarization times of more than 100 ms was created in intact hearts, no evidence for reentry was found and no spontaneous arrhythmias occurred. In conclusion, in the intact heart, M cells appear not to contribute to repolarization gradients and arrhythmias. Furthermore, no significant repolarization gradients between endocardium and epicardium exist. The T wave in the body surface electrocardiogram is caused by apico-basal and anterior posterior differences in repolarization times. (C) 2012 Elsevier Ltd. All rights reserve

    Deleting the accessory subunit KChIP2 results in loss of I(to,f) and increased I(K,slow) that maintains normal action potential configuration

    No full text
    BACKGROUND: Four voltage-gated potassium currents: I(to,f) (K(V)4.2), I(to,s) (K(V)1.4), I(K,slow) (K(V)1.5+K(V)2.1), and I(SS) (TASK1) govern murine ventricular repolarization. Although the accessory subunit, KChIP2, influences I(to,f) expression, in preliminary experiments we found that action potential duration (APD) is maintained in KChIP2 knockout mice. OBJECTIVE: We tested the role of KChIP2 in regulating APD and studied the underlying ionic currents. METHODS: We used microelectrode techniques, whole-cell patch clamp studies, and real-time PCR amplification to characterize ventricular repolarization and its determinants in WT and KChIP2(-/-) mice. RESULTS: Despite comparable baseline action potentials, APD was more markedly prolonged by 4-aminopyridine (4-AP) in KChIP2(-/-) preparations. Peak K(+) current densities were similar in WT and KChIP2(-/-) cells (mean±sem I(P): 28.3±2 (n=27) vs. 29.2±2 pA/pF (n=24), respectively; P>0.05). Heteropodatoxin-2 (HpTx-2, 1 μM) had no effect on current amplitude in KChIP2(-/-) myocytes. The current fractions sensitive to 4-AP (50 μM and 1 mM) were larger in KChIP2(-/-) than WT (P<0.05). Real-time PCR demonstrated absence of KChIP2 and increased K(V)1.5 expression in KChIP2(-/-) ventricular myocardium. CONCLUSION: KChIP2 deficiency eliminated HpTx-2-sensitive I(to,f), but had little impact on total APD, secondary to upregulation of 4-AP-sensitive I(K,slow) in association with increased K(V)1.5 expression. There is increased sensitivity to 4-AP-mediated APD prolongation in KChIP2(-/-). Thus, KChIP2 appears important for murine repolarization in circumstances of reduced repolarization reserve

    Interventricular dispersion in repolarization causes bifid T waves in dogs with dofetilide-induced long QT syndrome

    No full text
    BACKGROUND: Long QT2 (LQT2) syndrome is characterized by bifid (or notched) T waves, whose mechanism is not understood. OBJECTIVE: The purpose of this study was to test whether increased interventricular dispersion of repolarization induces bifid T waves. METHODS: We simultaneously recorded surface ECG and unipolar electrograms at baseline and after dofetilide in a canine model of dofetilide-induced LQT2 (6 male mongrel dogs). Standard ECG variables, T-wave duration, and moments of peaks of bifid T waves (Tp1 and Tp2) were correlated with moments of local repolarization. Epicardial electrograms were recorded over the left ventricular (LV) and right ventricular (RV) anterior walls (11 × 11 electrode grid, 5-mm interelectrode distance). In 5 of the 6 hearts, we also recorded intramural unipolar electrograms (n = 4-7 needles per heart). In each unipolar recording, we determined activation time, repolarization time (RTs), and activation-recovery interval. In addition, we studied RT response to heart rate changes. RESULTS: Dofetilide prolonged QT and QTc, induced bifid T waves in 4 of 6 animals, and prolonged RT heterogeneously in LV and RV, resulting in increased interventricular and LV intraventricular RT dispersion. Dofetilide did not induce a disparate response in activation-recovery interval across the transmural axis. Dofetilide-induced separation of RT across the RV-LV interface concurred with the moments of T-wave peaks. Dofetilide-induced steepening of restitution slopes was larger in LV than RV. CONCLUSION: Dofetilide-induced bifid T waves result from interventricular RT dispersion

    Increased late sodium current contributes to the electrophysiological effects of chronic, but not acute, dofetilide administration

    No full text
    Background - Drugs are screened for delayed rectifier potassium current (I Kr) blockade to predict long QT syndrome prolongation and arrhythmogenesis. However, single-cell studies have shown that chronic (hours) exposure to some I Kr blockers (eg, dofetilide) prolongs repolarization additionally by increasing late sodium current (I Na-L) via inhibition of phosphoinositide 3-kinase. We hypothesized that chronic dofetilide administration to intact dogs prolongs repolarization by blocking I Kr and increasing I Na-L. Methods and Results - We continuously infused dofetilide (6-9 μg/kg bolus+6-9 μg/kg per hour IV infusion) into anesthetized dogs for 7 hours, maintaining plasma levels within the therapeutic range. In separate experiments, myocardial biopsies were taken before and during 6-hour intravenous dofetide infusion, and the level of phospho-Akt was determined. Acute and chronic dofetilide effects on action potential duration (APD) were studied in canine left ventricular subendocardial slabs using microelectrode techniques. Dofetilide monotonically increased QTc and APD throughout 6.5-hour exposure. Dofetilide infusion during ≥210 minutes inhibited Akt phosphorylation. I Na-L block with lidocaine shortened QTc and APD more at 6.5 hours than at 50 minutes (QTc) or 30 minutes (APD) dofetilide administration. In comparison, moxifloxacin, an I Kr blocker with no effects on phosphoinositide 3-kinase and I Na-L prolonged APD acutely but no additional prolongation occurred on chronic superfusion. Lidocaine shortened APD equally during acute and chronic moxifloxacin superfusion. Conclusions - Increased I Na-L contributes to chronic dofetilide effects in vivo. These data emphasize the need to include time and I Na-L in evaluating the phosphoinositide 3-kinase inhibition-derived proarrhythmic potential of drugs and provide a mechanism for benefit from lidocaine administration in clinical acquired long QT syndrome
    corecore