3 research outputs found

    ΠžΠ¦Π•ΠΠšΠ Π‘Π’ΠΠ’Π˜Π‘Π’Π˜Π§Π•Π‘ΠšΠ˜Π₯ Π₯ΠΠ ΠΠšΠ’Π•Π Π˜Π‘Π’Π˜Πš ΠœΠ˜ΠžΠ“Π ΠΠ€Π˜Π§Π•Π‘ΠšΠžΠ™ ΠŸΠžΠœΠ•Π₯И ПРИ ΠœΠΠžΠ“ΠžΠšΠΠΠΠ›Π¬ΠΠžΠ™ Π Π•Π“Π˜Π‘Π’Π ΠΠ¦Π˜Π˜ Π­Π›Π•ΠšΠ’Π ΠžΠšΠΠ Π”Π˜ΠžΠ‘Π˜Π“ΠΠΠ›Π

    Get PDF
    Electromyographic noise is one of the most common noises in electrocardiogram. In case of several electrocardiogram leads, electromyographic noise affects each lead to different extent. It can be taken into account when developing algorithms for multilead electrocardiogram record processing. However, in the existing literature, there is no information about the relationship of electromyographic noise in various ECG leads and their joint probability distribution. The purpose of this paper is to study statistical characteristics of electromyographic noise in ECG signal, from which the electromyographic noise is extracted. The paper proposes a method for extracting electromyographic noise from electrocardiogram signal, based on a polynomial approximation of electrocardiogram signal fragments in sliding window with overlapping fragment subsequent weight averaging. Using this method, fragments of electromyographic noise are extracted from multichannel electrocardiogram records. Based on the obtained data, a joint probability distribution function of electromyographic noise in two adjacent leads is selected, and the correlation relationships between the electromyographic noise in various ECG leads are investigated. The results show that the joint probability distribution function of electromyographic noise in two adjacent leads in the first approximation can be described using bivariate normal distribution. In addition, between the samples of electromyographic noise from two adjacent leads quite strong correlation relationships can be observed.ΠœΠΈΠΎΠ³Ρ€Π°Ρ„ΠΈΡ‡Π΅ΡΠΊΠ°Ρ ΠΏΠΎΠΌΠ΅Ρ…Π° являСтся ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· самых распространСнных ΠΏΠΎΠΌΠ΅Ρ…, ΠΏΡ€ΠΈΡΡƒΡ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Π² элСктрокардиосигналС. Π’ случаС использования Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΎΡ‚Π²Π΅Π΄Π΅Π½ΠΈΠΉ элСктрокардиосигнала миографичСская ΠΏΠΎΠΌΠ΅Ρ…Π° Π² Ρ€Π°Π·Π½ΠΎΠΉ стСпСни ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ влияниС Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΠΈΠ· ΠΎΡ‚Π²Π΅Π΄Π΅Π½ΠΈΠΉ. Π­Ρ‚ΠΎ влияниС ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΡƒΡ‡Ρ‚Π΅Π½ΠΎ ΠΏΡ€ΠΈ построСнии Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠ² ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ°Π½Π°Π»ΡŒΠ½Ρ‹Ρ… записСй элСктрокардиосигнала. Однако Π² ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ нСдостаточно ΠΏΠΎΠ»Π½ΠΎ исслСдован Π°Π½Π°Π»ΠΈΠ· взаимосвязСй отсчСтов миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… отвСдСниях элСктрокардиосигнала. ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ – эмпиричСскоС исслСдованиС статистичСских характСристик миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ, Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΈΠ· Π·Π°ΡˆΡƒΠΌΠ»Π΅Π½Π½Ρ‹Ρ… Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² элСктрокардиосигнала. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ выдСлСния миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ ΠΈΠ· записСй элСктрокардиосигнала. ΠœΠ΅Ρ‚ΠΎΠ΄ основан Π½Π° полиномиальной аппроксимации Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² элСктрокардиосигнала Π² ΡΠΊΠΎΠ»ΡŒΠ·ΡΡ‰Π΅ΠΌ ΠΎΠΊΠ½Π΅ с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ вСсовым усрСднСниСм ΠΏΠ΅Ρ€Π΅ΠΊΡ€Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ…ΡΡ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ². Π‘ использованиСм Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ°Π½Π°Π»ΡŒΠ½Ρ‹Ρ… записСй элСктрокардиосигнала Π±Ρ‹Π»ΠΈ Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ. На основС Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Π½ΠΎ совмСстноС распрСдСлСниС отсчСтов миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ Π² Π΄Π²ΡƒΡ… смСТных отвСдСниях, Π° Ρ‚Π°ΠΊΠΆΠ΅ исслСдованы коррСляционныС взаимосвязи ΠΌΠ΅ΠΆΠ΄Ρƒ отсчСтами миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… отвСдСниях элСктрокардиосигнала. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ установлСно, Ρ‡Ρ‚ΠΎ совмСстноС распрСдСлСниС отсчСтов миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ Π² Π΄Π²ΡƒΡ… смСТных отвСдСниях Π² ΠΏΠ΅Ρ€Π²ΠΎΠΌ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ описано с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Π²ΡƒΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π°. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΌΠ΅ΠΆΠ΄Ρƒ отсчСтами миографичСской ΠΏΠΎΠΌΠ΅Ρ…ΠΈ ΠΈΠ· Π΄Π²ΡƒΡ… смСТных ΠΎΡ‚Π²Π΅Π΄Π΅Π½ΠΈΠΉ ΠΌΠΎΠ³ΡƒΡ‚ Π½Π°Π±Π»ΡŽΠ΄Π°Ρ‚ΡŒΡΡ довольно ΡΠΈΠ»ΡŒΠ½Ρ‹Π΅ коррСляционныС взаимосвязи

    EVALUATION OF ELECTROMYOGRAPHIC NOISE STATISTICAL CHARACTERISTICS IN MULTICHANNEL ECG RECORDINGS

    Get PDF
    Electromyographic noise is one of the most common noises in electrocardiogram. In case of several electrocardiogram leads, electromyographic noise affects each lead to different extent. It can be taken into account when developing algorithms for multilead electrocardiogram record processing. However, in the existing literature, there is no information about the relationship of electromyographic noise in various ECG leads and their joint probability distribution. The purpose of this paper is to study statistical characteristics of electromyographic noise in ECG signal, from which the electromyographic noise is extracted. The paper proposes a method for extracting electromyographic noise from electrocardiogram signal, based on a polynomial approximation of electrocardiogram signal fragments in sliding window with overlapping fragment subsequent weight averaging. Using this method, fragments of electromyographic noise are extracted from multichannel electrocardiogram records. Based on the obtained data, a joint probability distribution function of electromyographic noise in two adjacent leads is selected, and the correlation relationships between the electromyographic noise in various ECG leads are investigated. The results show that the joint probability distribution function of electromyographic noise in two adjacent leads in the first approximation can be described using bivariate normal distribution. In addition, between the samples of electromyographic noise from two adjacent leads quite strong correlation relationships can be observed

    The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure:a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial

    No full text
    Background: Many patients with heart failure remain symptomatic and have a poor prognosis despite existing treatments. Decreases in myocardial contractility and shortening of ventricular systole are characteristic of systolic heart failure and might be improved by a new therapeutic class, cardiac myosin activators. We report the first study of the cardiac myosin activator, omecamtiv mecarbil, in patients with systolic heart failure. Methods: We undertook a double-blind, placebo-controlled, crossover, dose-ranging, phase 2 trial investigating the effects of omecamtiv mecarbil (formerly CK-1827452), given intravenously for 2, 24, or 72 h to patients with stable heart failure and left ventricular systolic dysfunction receiving guideline-indicated treatment. Clinical assessment (including vital signs, echocardiograms, and electrocardiographs) and testing of plasma drug concentrations took place during and after completion of each infusion. The primary aim was to assess safety and tolerability of omecamtiv mecarbil. This study is registered at ClinicalTrials.gov, NCT00624442. Findings: 45 patients received 151 infusions of active drug or placebo. Placebo-corrected, concentration-dependent increases in left ventricular ejection time (up to an 80 ms increase from baseline) and stroke volume (up to 9Β·7 mL) were recorded, associated with a small reduction in heart rate (up to 2Β·7 beats per min; p<0Β·0001 for all three measures). Higher plasma concentrations were also associated with reductions in end-systolic (decrease of 15 mL at >500 ng/mL, p=0Β·0026) and end-diastolic volumes (16 mL, p=0Β·0096) that might have been more pronounced with increased duration of infusion. Cardiac ischaemia emerged at high plasma concentrations (two patients, plasma concentrations roughly 1750 ng/mL and 1350 ng/mL). For patients tolerant of all study drug infusions, no consistent pattern of adverse events with either dose or duration emerged. Interpretation: Omecamtiv mecarbil improved cardiac function in patients with heart failure caused by left ventricular dysfunction and could be the first in class of a new therapeutic agent
    corecore