3 research outputs found

    Domain Adaptation Principal Component Analysis: Base Linear Method for Learning with Out-of-Distribution Data

    No full text
    Domain adaptation is a popular paradigm in modern machine learning which aims at tackling the problem of divergence (or shift) between the labeled training and validation datasets (source domain) and a potentially large unlabeled dataset (target domain). The task is to embed both datasets into a common space in which the source dataset is informative for training while the divergence between source and target is minimized. The most popular domain adaptation solutions are based on training neural networks that combine classification and adversarial learning modules, frequently making them both data-hungry and difficult to train. We present a method called Domain Adaptation Principal Component Analysis (DAPCA) that identifies a linear reduced data representation useful for solving the domain adaptation task. DAPCA algorithm introduces positive and negative weights between pairs of data points, and generalizes the supervised extension of principal component analysis. DAPCA is an iterative algorithm that solves a simple quadratic optimization problem at each iteration. The convergence of the algorithm is guaranteed, and the number of iterations is small in practice. We validate the suggested algorithm on previously proposed benchmarks for solving the domain adaptation task. We also show the benefit of using DAPCA in analyzing single-cell omics datasets in biomedical applications. Overall, DAPCA can serve as a practical preprocessing step in many machine learning applications leading to reduced dataset representations, taking into account possible divergence between source and target domains

    Composite Wound Dressing Based on Chitin/Chitosan Nanofibers: Processing and Biomedical Applications

    No full text
    An electrospinning technique was used for the preparation of a bilayered wound dressing consisting of a layer of aliphatic copolyamide nanofibers and a layer of composite nanofibers from chitosan and chitin nanofibrils filler. Processed dressings were compared with aliphatic copolyamide nanofiber-based wound dressings and control groups. Experimental studies (in vivo treatment of third-degree burns with this dressing) demonstrated that almost complete (up to 97.8%) epithelialization of the wound surface had been achieved within 28 days. Planimetric assessment demonstrated a significant acceleration of the wound healing process. Histological analysis of scar tissue indicated the presence of a significant number of microvessels and a low number of infiltrate cells. In the target group, there were no deaths or purulent complications, whereas in the control group these occurred in 25% and 59.7% of cases, respectively—and, in the copolyamide group, 0% and 11%, respectively. The obtained data show the high efficiency of application of the developed composite chitosan‒copolyamide wound dressings for the treatment of burn wounds

    Fast Recombination of Charge-Transfer State in Organic Photovoltaic Composite of P3HT and Semiconducting Carbon Nanotubes Is the Reason for Its Poor Photovoltaic Performance

    No full text
    Although the photovoltaic performance of the composite of poly-3-hexylthiophene (P3HT) with semiconducting single-walled carbon nanotubes (s-SWCNT) is promising, the short-circuit current density jSC is much lower than that for typical polymer/fullerene composites. Out-of-phase electron spin echo (ESE) technique with laser excitation of the P3HT/s-SWCNT composite was used to clarify the origin of the poor photogeneration of free charges. The appearance of out-of-phase ESE signal is a solid proof that the charge-transfer state of P3HT+/s-SWCNT− is formed upon photoexcitation and the electron spins of P3HT+ and s-SWCNT− are correlated. No out-of-phase ESE signal was detected in the same experiment with pristine P3HT film. The out-of-phase ESE envelope modulation trace for P3HT/s-SWCNT composite was close to that for the polymer/fullerene photovoltaic composite PCDTBT/PC70BM, which implies a similar distance of initial charge separation in the range 2–4 nm. However, out-of-phase ESE signal decay with delay after laser flash increase for P3HT/s-SWCNT composite was much faster, with a characteristic time of 10 µs at 30 K. This points to the higher geminate recombination rate for the P3HT/s-SWCNT composite, which may be one of the reasons for the relatively poor photovoltaic performance of this system
    corecore