45 research outputs found

    Performance of Hyperbolic Geometry Models on Top-N Recommendation Tasks

    Full text link
    We introduce a simple autoencoder based on hyperbolic geometry for solving standard collaborative filtering problem. In contrast to many modern deep learning techniques, we build our solution using only a single hidden layer. Remarkably, even with such a minimalistic approach, we not only outperform the Euclidean counterpart but also achieve a competitive performance with respect to the current state-of-the-art. We additionally explore the effects of space curvature on the quality of hyperbolic models and propose an efficient data-driven method for estimating its optimal value.Comment: Accepted at ACM RecSys 2020; 7 page

    Auger feed mixer with perforated winding

    Get PDF
    The article presents the results of an analysis of existing feed mixers and feed mixer patents. Disadvantages such as high power consumption, low uniformity of mixed feed, and high metal consumption have been identified. We have presented the design of a screw feed mixer

    Energy-Spin Trajectories in AdS_5 x S^5 from Semiclassical Vertex Operators

    Full text link
    We study the relation between vertex operators in AdS_5 x S^5 and classical spinning string solutions. In the limit of large quantum numbers the treatment of vertex operators becomes semiclassical. In this regime, a given vertex operator carrying a certain set of quantum numbers defines a singular solution. We show in a number of examples that this solution coincides with the classical string solution with the same quantum numbers but written in a different two-dimensional coordinate system. The marginality condition imposed on an operator yields a relation between the energy and the other quantum numbers which is shown to coincide with that of the corresponding classical string solution. We also argue that in some cases vertex operators in AdS_5 x S^5 cannot be given by expressions similar to the ones in flat space and a more involved consideration is required.Comment: 23 pages, 1 Figur

    Caged Black Holes: Black Holes in Compactified Spacetimes I -- Theory

    Full text link
    In backgrounds with compact dimensions there may exist several phases of black objects including the black-hole and the black-string. The phase transition between them raises puzzles and touches fundamental issues such as topology change, uniqueness and Cosmic Censorship. No analytic solution is known for the black hole, and moreover, one can expect approximate solutions only for very small black holes, while the phase transition physics happens when the black hole is large. Hence we turn to numerical solutions. Here some theoretical background to the numerical analysis is given, while the results will appear in a forthcoming paper. Goals for a numerical analysis are set. The scalar charge and tension along the compact dimension are defined and used as improved order parameters which put both the black hole and the black string at finite values on the phase diagram. Predictions for small black holes are presented. The differential and the integrated forms of the first law are derived, and the latter (Smarr's formula) can be used to estimate the ``overall numerical error''. Field asymptotics and expressions for physical quantities in terms of the numerical ones are supplied. Techniques include ``method of equivalent charges'', free energy, dimensional reduction, and analytic perturbation for small black holes.Comment: 23 pages. v3: version to be published in PRD, 3 references adde
    corecore