7 research outputs found

    Carbon Dots with an Emission in the Near Infrared Produced from Organic Dyes in Porous Silica Microsphere Templates

    No full text
    Carbon dots (CDs) with an emission in the near infrared spectral region are attractive due to their promising applications in bio-related areas, while their fabrication still remains a challenging task. Herein, we developed a template-assisted method using porous silica microspheres for the formation of CDs with optical transitions in the near infrared. Two organic dyes, Rhodamine 6G and IR1061 with emission in the yellow and near infrared spectral regions, respectively, were used as precursors for CDs. Correlation of morphology and chemical composition with optical properties of obtained CDs revealed the origin of their emission, which is related to the CDs’ core optical transitions and dye-derivatives within CDs. By varying annealing temperature, different kinds of optical centers as derivatives of organic dyes are formed in the microsphere’s pores. The template-assisted method allows us to synthesize CDs with an emission peaked at 1085 nm and photoluminescence quantum yield of 0.2%, which is the highest value reported so far for CDs emitting at wavelengths longer than 1050 nm

    Applications of Carbon Dots in Optoelectronics

    No full text
    Carbon dots (CDs) are an attractive class of nanomaterials due to the ease of their synthesis, biocompatibility, and superior optical properties. The electronic structure of CDs and hence their optical transitions can be controlled and tuned over a wide spectral range via the choice of precursors, adjustment of the synthetic conditions, and post-synthetic treatment. We summarize recent progress in the synthesis of CDs emitting in different colors in terms of morphology and optical properties of the resulting nanoparticles, with a focus on the synthetic approaches allowing to shift their emission to longer wavelengths. We further consider formation of CD-based composite materials, and review approaches used to prevent aggregation and self-quenching of their emission. We then provide examples of applications of CDs in optoelectronic devices, such as solar cells and light-emitting diodes (LEDs) with a focus on white LEDs

    Applications of Carbon Dots in Optoelectronics

    No full text
    Carbon dots (CDs) are an attractive class of nanomaterials due to the ease of their synthesis, biocompatibility, and superior optical properties. The electronic structure of CDs and hence their optical transitions can be controlled and tuned over a wide spectral range via the choice of precursors, adjustment of the synthetic conditions, and post-synthetic treatment. We summarize recent progress in the synthesis of CDs emitting in different colors in terms of morphology and optical properties of the resulting nanoparticles, with a focus on the synthetic approaches allowing to shift their emission to longer wavelengths. We further consider formation of CD-based composite materials, and review approaches used to prevent aggregation and self-quenching of their emission. We then provide examples of applications of CDs in optoelectronic devices, such as solar cells and light-emitting diodes (LEDs) with a focus on white LEDs

    Self‐Assembly of Hydrogen‐Bonded Organic Crystals on Arbitrary Surfaces for Efficient Amplified Spontaneous Emission

    No full text
    Organic lasers attract much attention due to their high efficiency, low energy consumption, and structural flexibility. However, long‐term stability and the creation of the lasers on arbitrary surfaces remain a challenge. Here, a synthesis of amide‐based organic molecules that provides packing into hydrogen‐bonded organic crystals (OCs) is reported. The resulting OCs demonstrate an amplified spontaneous emission (ASE) regime with 0.55 ΌJ cm−2 threshold under the normal conditions due to 5%–13% quantum yield and high emission rate (1.02 ns). The simple process of self‐assembly of the hydrogen‐bonded OCs and highly stable ASE (over 30 min of continuous operation) allow fabricating fibers, flexible polymers, and hard planar periodic optical systems based on them, which paves the way to creating organic laser diodes of an arbitrary design

    Dual-Purpose Sensing Nanoprobe Based on Carbon Dots from o-Phenylenediamine: pH and Solvent Polarity Measurement

    No full text
    Today, the development of nanomaterials with sensing properties attracts much scientific interest because of the demand for low-cost nontoxic colloidal nanoprobes with high sensitivity and selectivity for various biomedical and environment-related applications. Carbon dots (CDs) are promising candidates for these applications as they demonstrate unique optical properties with intense emissions, biocompatibility, and ease of fabrication. Herein, we developed synthesis protocols to obtain CDs based on o-phenylenediamine with a variety of optical responses depending on additional precursors and changes in the reaction media. The obtained CDs are N-doped (N,S-doped in case of thiourea addition) less than 10 nm spherical particles with emissions observed in the 300–600 nm spectral region depending on their chemical composition. These CDs may act simultaneously as absorptive/fluorescent sensing probes for solvent polarity with ∆S/∆ENT  up to 85, for ∆ENT from 0.099 to 1.0 and for pH values in the range of 3.0–8.0, thus opening an opportunity to check the pH in non-pure water or a mixture of solvents. Moreover, CDs preserve their optical properties when embedded in cellulose strips that can be used as sensing probes for fast and easy pH checks. We believe that the resulting dual-purpose sensing nano probes based on CDs will have high demand in various sensing applications

    Carbon Dots with an Emission in the Near Infrared Produced from Organic Dyes in Porous Silica Microsphere Templates

    No full text
    Carbon dots (CDs) with an emission in the near infrared spectral region are attractive due to their promising applications in bio-related areas, while their fabrication still remains a challenging task. Herein, we developed a template-assisted method using porous silica microspheres for the formation of CDs with optical transitions in the near infrared. Two organic dyes, Rhodamine 6G and IR1061 with emission in the yellow and near infrared spectral regions, respectively, were used as precursors for CDs. Correlation of morphology and chemical composition with optical properties of obtained CDs revealed the origin of their emission, which is related to the CDs’ core optical transitions and dye-derivatives within CDs. By varying annealing temperature, different kinds of optical centers as derivatives of organic dyes are formed in the microsphere’s pores. The template-assisted method allows us to synthesize CDs with an emission peaked at 1085 nm and photoluminescence quantum yield of 0.2%, which is the highest value reported so far for CDs emitting at wavelengths longer than 1050 nm
    corecore