6 research outputs found
Dynamics of Ultrafast Phase Transitions in (001) Si on the Shock-Wave Front
We demonstrate an ultrafast (<0.1 ps) reversible phase transition in silicon (Si) under ultrafast pressure loading using molecular dynamics. Si changes its structure from cubic diamond to β-Sn on the shock-wave front. The phase transition occurs when the shock-wave pressure exceeds 11 GPa. Atomic volume, centrosymmetry, and the X-ray-diffraction spectrum were revealed as effective indicators of phase-transition dynamics. The latter, being registered in actual experimental conditions, constitutes a breakthrough in the path towards simple X-ray optical cross-correlation and pump-probe experiments
Dynamics of Laser-Induced Shock Waves in Supercritical CO<sub>2</sub>
We studied the dynamics of laser-induced shock waves in supercritical CO2 (scCO2) for different pressures and temperatures under nanosecond optical breakdown. We estimated the shock wave pressure and energy, including their evolution during shock wave propagation. The maximal shock wave pressure ~0.5 GPa was obtained in liquid-like scCO2 (155 bar 55 °C), where the fluid density is greater. However, the maximal shock wave energy ~25 μJ was achieved in sub-critical conditions (67 bar, 55 °C) due to a more homogeneous microstructure of fluid in comparison with supercritical fluid. The minimal pressure and energy of the shock wave are observed in the Widom delta (a delta-like region in the vicinity of the critical point) due to the clusterization of scCO2, which strongly affects the energy transfer from the nanosecond laser pulse to the shock wave
Dynamics of Ultrafast Phase Transitions in (001) Si on the Shock-Wave Front
We demonstrate an ultrafast (<0.1 ps) reversible phase transition in silicon (Si) under ultrafast pressure loading using molecular dynamics. Si changes its structure from cubic diamond to β-Sn on the shock-wave front. The phase transition occurs when the shock-wave pressure exceeds 11 GPa. Atomic volume, centrosymmetry, and the X-ray-diffraction spectrum were revealed as effective indicators of phase-transition dynamics. The latter, being registered in actual experimental conditions, constitutes a breakthrough in the path towards simple X-ray optical cross-correlation and pump-probe experiments
Evolution of Shock-Induced Pressure in Laser Bioprinting
Laser bioprinting with gel microdroplets that contain living cells is a promising method for use in microbiology, biotechnology, and medicine. Laser engineering of microbial systems (LEMS) technology by laser-induced forward transfer (LIFT) is highly effective in isolating difficult-to-cultivate and uncultured microorganisms, which are essential for modern bioscience. In LEMS the transfer of a microdroplet of a gel substrate containing living cell occurs due to the rapid heating under the tight focusing of a nanosecond infrared laser pulse onto thin metal film with the substrate layer. During laser transfer, living organisms are affected by temperature and pressure jumps, high dynamic loads, and several others. The study of these factors’ role is important both for improving laser printing technology itself and from a purely theoretical point of view in relation to understanding the mechanisms of LEMS action. This article presents the results of an experimental study of bubbles, gel jets, and shock waves arising in liquid media during nanosecond laser heating of a Ti film obtained using time-resolving shadow microscopy. Estimates of the pressure jumps experienced by microorganisms in the process of laser transfer are performed: in the operating range of laser energies for bioprinting LEMS technology, pressure jumps near the absorbing film of the donor plate is about 30 MPa. The efficiency of laser pulse energy conversion to mechanical post-effects is about 10%. The estimates obtained are of great importance for microbiology, biotechnology, and medicine, particularly for improving the technologies related to laser bioprinting and the laser engineering of microbial systems
Hybrid Approach for Multiscale and Multimodal Time-Resolved Diagnosis of Ultrafast Processes in Materials via Tailored Synchronization of Laser and X-ray Sources at MHz Repetition Rates
The synchronization of laser and X-ray sources is essential for time-resolved measurements in the study of ultrafast processes, including photo-induced piezo-effects, shock wave generation, and phase transitions. On the one hand, optical diagnostics (by synchronization of two laser sources) provides information about changes in vibration frequencies, shock wave dynamics, and linear and nonlinear refractive index behavior. On the other hand, optical pump–X-ray probe diagnostics provide an opportunity to directly reveal lattice dynamics. To integrate two approaches into a unified whole, one needs to create a robust method for the synchronization of two systems with different repetition rates up to the MHz range. In this paper, we propose a universal approach utilizing a field-programmable gate array (FPGA) to achieve precise synchronization between different MHz sources such as various lasers and synchrotron X-ray sources. This synchronization method offers numerous advantages, such as high flexibility, fast response, and low jitter. Experimental results demonstrate the successful synchronization of two different MHz systems with a temporal resolution of 250 ps. This enables ultrafast measurements with a sub-nanosecond resolution, facilitating the uncovering of complex dynamics in ultrafast processes
Optical Diagnostics of Supercritical CO2 and CO2-Ethanol Mixture in the Widom Delta
The supercritical CO2 (scCO2) is widely used as solvent and transport media in different technologies. The technological aspects of scCO2 fluid applications strongly depend on spatial–temporal fluctuations of its thermodynamic parameters. The region of these parameters’ maximal fluctuations on the p-T (pressure-temperature) diagram is called Widom delta. It has significant practical and fundamental interest. We offer an approach that combines optical measurements and molecular dynamics simulation in a wide range of pressures and temperatures. We studied the microstructure of supercritical CO2 fluid and its binary mixture with ethanol in a wide range of temperatures and pressures using molecular dynamics (MD) simulation. MD is used to retrieve a set of optical characteristics such as Raman spectra, refractive indexes and molecular refraction and was verified by appropriate experimental measurements. We demonstrated that in the Widom delta the monotonic dependence of the optical properties on the CO2 density is violated. It is caused by the rapid increase of density fluctuations and medium-sized (20–30 molecules) cluster formation. We identified the correlation between cluster parameters and optical properties of the media; in particular, it is established that the clusters in the Widom delta acts as a seed for clustering in molecular jets. MD demonstrates that the cluster formation is stronger in the supercritical CO2-ethanol mixture, where the extended binary clusters are formed; that is, the nonlinear refractive index significantly increased. The influence of the supercritical state in the cell on the formation of supersonic cluster jets is studied using the Mie scattering technique