18 research outputs found

    Immunochemical detection of analytes by using fluorescence

    No full text
    18 page(s

    Red blood cells do not attenuate the SPCE fluorescence in surface assays

    No full text
    We describe the positive effect of surface plasmon-coupled fluorescence emission (SPCE) on the detection of a signal from a surface immunoassay in highly absorbing or/and scattering samples. A model immunoassay using fluorescently labeled anti-rabbit antibodies that bind to rabbit immunoglobulin on a silver surface was performed, and the signal was detected in the presence of various highly absorbing and/or scattering solutions or suspensions, such as hemoglobin solution, plastic beads, and red blood cells. The results showed that a highly absorbing solution consisting of small molecules (dye, hemoglobin) attenuates the SPCE signal approximately 2–3-fold. In contrast, suspensions with the same absorption containing large particles (large beads, red blood cell suspension) attenuate the SPCE signal only slightly, approximately 5–10%. Also, a suspension of large undyed, highly scattering beads does not reduce the SPCE signal. The effects on the immunoassay signal of the sample background absorption and scattering, the size of the background particles, and the geometry of the experimental set-up are discussed. We believe that SPCE is a promising technique in the development of biosensors utilized for surface-based assays, as well as any assays performed directly in highly absorbing and/or scattering solutions without washing or separation procedures.9 page(s

    Coupled plasmon effects for the enhancement of fluorescent immunoassays

    No full text
    We present a study of fluoroimmunoassays using Rhodamine-RedX labelled antibodies enhanced by nanoparticle silver island films (SIFs) in the presence of thin metallic layers. Our results show enhancement of the immunoassay signal by up to 10-fold for SIFs on glass and up to 50-fold enhancement for SIFs supported by a metal surface. An explanation for these effects is proposed by considering plasmonic coupling within the system and modification of the fluorophore spontaneous emission rate.4 page(s

    Metal particle-enhanced fluorescent immunoassays on metal mirrors

    No full text
    We present fluoroimmunoassays on plain metal-coated surfaces (metal mirrors) enhanced by metal nanoparticles (silver island films [SIFs]). Metal mirrors (aluminum, gold, or silver protected with a thin silica layer) were coated with SIFs, and an immunoassay (model assay for rabbit immunoglobulin G or myoglobin immunoassay) was performed on this surface using fluorescently labeled antibodies. Our results showed that SIFs alone (on glass surface not coated with metal) enhance the immunoassay signal approximately 3- to 10-fold. Using a metal mirror instead of glass as support for SIFs results in up to 50-fold signal enhancement.7 page(s

    Ultrasensitive detection in optically dense physiological media : applications to fast reliable biological assays

    No full text
    We present a novel approach for performing fluorescence immunoassay in serum and whole blood using fluorescently labeled anti-rabbit IgG. This approach, which is based on Surface Plasmon-Coupled Emission (SPCE), provides increased sensitivity and substantial background reduction due to exclusive selection of the signal from the fluorophores located near a bio-affinity surface. Effective coupling range for SPCE is only couple of hundred nanometers from the metallic surface. Excited fluorophores outside the coupling layer do not contribute to SPCE, and their free-space emission is not transmitted through the opaque metallic film into the glass substrate. An antigen (rabbit IgG) was adsorbed to a slide covered with a thin silver metal layer, and the SPCE signal from the fluorophore-labeled anti-rabbit antibody, binding to the immobilized antigen, was detected. The effect of the sample matrix (buffer, human serum, or human whole blood) on the end-point immunoassay SPCE signal is discussed. The kinetics of binding could be monitored directly in whole blood or serum. The results showed that human serum and human whole blood attenuate the SPCE end-point signal and the immunoassay kinetic signal only approximately 2- and 3-fold, respectively (compared to buffer), resulting in signals that are easily detectable even in whole blood. The high optical absorption of the hemoglobin can be tolerated because only fluorophores within a couple of hundred nanometers from the metallic film contribute to SPCE. Both glass and plastic slides can be used for SPCE-based assays. We believe that SPCE has the potential of becoming a powerful approach for performing immunoassays based on surface-bound analytes or antibodies for many biomarkers directly in dense samples such as whole blood, without any need for washing steps

    Ratiometric Zinc Biosensor Based on Bioluminescence Resonance Energy Transfer: Trace Metal Ion Determination with Tunable Response

    No full text
    Determination of metal ions such as zinc in solution remains an important task in analytical and biological chemistry. We describe a novel zinc ion biosensing approach using a carbonic anhydrase–Oplophorus luciferase fusion protein that employs bioluminescence resonance energy transfer (BRET) to transduce the level of free zinc as a ratio of emission intensities in the blue and orange portions of the spectrum. In addition to high sensitivity (below nanomolar levels) and selectivity, this approach allows both quantitative determination of “free” zinc ion (also termed “mobile” or “labile”) using bioluminescence ratios and determination of the presence of the ion above a threshold simply by the change in color of bioluminescence, without an instrument. The carbonic anhydrase metal ion sensing platform offers well-established flexibility in sensitivity, selectivity, and response kinetics. Finally, bioluminescence labeling has proven an effective approach for molecular imaging in vivo since no exciting light is required; the expressible nature of this sensor offers the prospect of imaging zinc fluxes in vivo
    corecore