81 research outputs found
Development of a verifiably accurate road lighting calculation application in accordance with EN13021-3:2003
Road lighting installations are required to meet performance figures determined by a region's governing body in order to assure that the scheme will provide adequate lighting for road users after dark. For many countries in Europe including the UK, road lighting standards are dictated by the European Committee for Standardisation (CEN). To establish whether a proposed lighting installation will meet its relevant targets, a method of prediction must be used to ascertain the light distribution over the considered area. This is achieved by using mathematical formulas to calculate the results of the proposed installation. Traditionally luminaire manufacturers would provide charts, tables and graphical tools derived form these formulas so that a conforming scheme could be established without having to perform complex calculations. Today however, these methods of light computation are considered obsolete by the majority of people in the industry as lighting software will generate and present results far quicker than manual processes. The aim of this project was to create a system for verifying the accuracy of road lighting software in accordance with EN 13201-3. This has been addressed by developing an application within Microsoft Excel that follows these conventions exactly and also presents intermediate calculation stages in spreadsheets so that its methods of computation can be understood. This paper details its development and also identifies issues found in the standard as a result of this project
Recommended from our members
Practice patterns and outcomes of equivocal bone scans for patients with castration-resistant prostate cancer: Results from SEARCH.
ObjectiveTo review follow-up imaging after equivocal bone scans in men with castration resistant prostate cancer (CRPC) and examine the characteristics of equivocal bone scans that are associated with positive follow-up imaging.MethodsWe identified 639 men from five Veterans Affairs Hospitals with a technetium-99m bone scan after CRPC diagnosis, of whom 99 (15%) had equivocal scans. Men with equivocal scans were segregated into "high-risk" and "low-risk" subcategories based upon wording in the bone scan report. All follow-up imaging (bone scans, computed tomography [CT], magnetic resonance imaging [MRI], and X-rays) in the 3 months after the equivocal scan were reviewed. Variables were compared between patients with a positive vs. negative follow-up imaging after an equivocal bone scan.ResultsOf 99 men with an equivocal bone scan, 43 (43%) received at least one follow-up imaging test, including 32/82 (39%) with low-risk scans and 11/17 (65%) with high-risk scans (p = 0.052). Of follow-up tests, 67% were negative, 14% were equivocal, and 19% were positive. Among those who underwent follow-up imaging, 3/32 (9%) low-risk men had metastases vs. 5/11 (45%) high-risk men (p = 0.015).ConclusionWhile 19% of all men who received follow-up imaging had positive follow-up imaging, only 9% of those with a low-risk equivocal bone scan had metastases versus 45% of those with high-risk. These preliminary findings, if confirmed in larger studies, suggest follow-up imaging tests for low-risk equivocal scans can be delayed while high-risk equivocal scans should receive follow-up imaging
Recommended from our members
Comparison of electrical CD measurements and cross-section lattice-plane counts of sub-micrometer features replicated in Silicon-on-Insulator materials
Electrical test structures of the type known as cross-bridge resistors have been patterned in (100) epitaxial silicon material that was grown on Bonded and Etched-Back Silicon-on-Insulator (BESOI) substrates. The CDs (Critical Dimensions) of a selection of their reference segments have been measured electrically, by SEM (Scanning-Electron Microscopy) cross-section imaging, and by lattice-plane counting. The lattice-plane counting is performed on phase-contrast images made by High-Resolution Transmission-Electron Microscopy (HRTEM). The reference-segment features were aligned with <110> directions in the BESOI surface material. They were defined by a silicon micromachining process which results in their sidewalls being atomically-planar and smooth and inclined at 54.737{degree} to the surface (100) plane of the substrate. This (100) implementation may usefully complement the attributes of the previously-reported vertical-sidewall one for selected reference-material applications. The SEM, HRTEM, and electrical CD (ECD) linewidth measurements that are made on BESOI features of various drawn dimensions on the same substrate is being investigated to determine the feasibility of a CD traceability path that combines the low cost, robustness, and repeatability of the ECD technique and the absolute measurement of the HRTEM lattice-plane counting technique. Other novel aspects of the (100) SOI implementation that are reported here are the ECD test-structure architecture and the making of HRTEM lattice-plane counts from both cross-sectional, as well as top-down, imaging of the reference features. This paper describes the design details and the fabrication of the cross-bridge resistor test structure. The long-term goal is to develop a technique for the determination of the absolute dimensions of the trapezoidal cross-sections of the cross-bridge resistors reference segments, as a prelude to making them available for dimensional reference applications
DOI 10.1007/s10514-006-6475-7 Multimode locomotion via SuperBot reconfigurable robots
Abstract One of the most challenging issues for a selfsustaining robotic system is how to use its limited resources to accomplish a large variety of tasks. The scope of such tasks could include transportation, exploration, construction, inspection, maintenance, in-situ resource utilization, and support for astronauts. This paper proposes a modular and reconfigurable solution for this challenge by allowing a robot to support multiple modes of locomotion and select the appropriate mode for the task at hand. This solution relies on robots that are made of reconfigurable modules. Each locomotion mode consists of a set of characteristics for the environment type, speed, turning-ability, energy-efficiency, and recoverability from failures. This paper demonstrates a solution using the SuperBot robot that combines advantages from M-TRAN, CONRO, ATRON, and other chain-based and lattice-based robots. At the present, a single real Super-Bot module can move, turn, sidewind, maneuver, and travel on batteries up to 500 m on carpet in an office environment. In physics-based simulation, SuperBot modules can perform multimodal locomotions such as snake, caterpillar, insect, spider, rolling track, H-walker, etc. It can move at speeds of up to 1.0 m/s on flat terrain using less than 6 W per module, and climb slopes of no less 40 degrees
- …