671 research outputs found
Serum and Tissue Biomarkers Associated With Composite of Relevant Endpoints for Sj\uf6gren Syndrome (CRESS) and Sj\uf6gren Tool for Assessing Response (STAR) to B Cell–Targeted Therapy in the Trial of Anti–B Cell Therapy in Patients With Primary Sj\uf6gren Syndrome (TRACTISS)
\ua9 2023 The Authors. Arthritis & Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.Objective: This study aimed to identify peripheral and salivary gland (SG) biomarkers of response/resistance to B cell depletion based on the novel concise Composite of Relevant Endpoints for Sj\uf6gren Syndrome (cCRESS) and candidate Sj\uf6gren Tool for Assessing Response (STAR) composite endpoints. Methods: Longitudinal analysis of peripheral blood and SG biopsies was performed pre- and post-treatment from the Trial of Anti–B Cell Therapy in Patients With Primary Sj\uf6gren Syndrome (TRACTISS) combining flow cytometry immunophenotyping, serum cytokines, and SG bulk RNA sequencing. Results: Rituximab treatment prevented the worsening of SG inflammation observed in the placebo arm, by inhibiting the accumulation of class-switched memory B cells within the SG. Furthermore, rituximab significantly down-regulated genes involved in immune-cell recruitment, lymphoid organization alongside antigen presentation, and T cell co-stimulatory pathways. In the peripheral compartment, rituximab down-regulated immunoglobulins and auto-antibodies together with pro-inflammatory cytokines and chemokines. Interestingly, patients classified as responders according to STAR displayed significantly higher baseline levels of C-X-C motif chemokine ligand-13 (CXCL13), interleukin (IL)-22, IL-17A, IL-17F, and tumor necrosis factor-α (TNF-α), whereas a longitudinal analysis of serum T cell–related cytokines showed a selective reduction in both STAR and cCRESS responder patients. Conversely, cCRESS response was better associated with biomarkers of SG immunopathology, with cCRESS-responders showing a significant decrease in SG B cell infiltration and reduced expression of transcriptional gene modules related to T cell costimulation, complement activation, and Fcγ-receptor engagement. Finally, cCRESS and STAR response were associated with a significant improvement in SG exocrine function linked to transcriptional evidence of SG epithelial and metabolic restoration. Conclusion: Rituximab modulates both peripheral and SG inflammation, preventing the deterioration of exocrine function with functional and metabolic restoration of the glandular epithelium. Response assessed by newly developed cCRESS and STAR criteria was associated with differential modulation of peripheral and SG biomarkers, emerging as novel tools for patient stratification. (Figure presented.)
Testing the isotropy of the Dark Energy Survey's extreme trans-Neptunian objects
We test whether the population of "extreme" trans-Neptunian objects (eTNOs)
detected in the Y4 Dark Energy Survey (DES) data exhibit azimuthal asymmetries
which might be evidence of gravitational perturbations from an unseen
super-Earth in a distant orbit. By rotating the orbits of the detected eTNOs,
we construct a synthetic population which, when subject to the DES selection
function, reproduces the detected distribution of eTNOs in the orbital elements
and as well as absolute magnitude , but has uniform distributions
in mean anomaly , longitude of ascending node and argument of
perihelion We then compare the detected distributions in each of
and to those expected from the
isotropic population, using Kuiper's variant of the Kolmogorov-Smirnov test.
The three angles are tested for each of 4 definitions of the eTNO population,
choosing among AU and perihelion AU. These choices
yield 3--7 eTNOs in the DES Y4 sample. Among the twelve total tests, two have
the likelihood of drawing the observed angles from the isotropic population at
AU, and the 4 detections at AU, have distribution with of coming from the isotropic
construction, but this is not strong evidence of anisotropy given the 12
different tests. The DES data taken on their own are thus consistent with
azimuthal isotropy and do not require a "Planet 9" hypothesis. The limited sky
coverage and object count mean, however, that the DES data by no means falsify
this hypothesis.Comment: Accepted on PS
Testing the isotropy of the dark energy Survey's extreme trans-neptunian objects
We test whether the population of "extreme"trans-Neptunian objects (eTNOs) detected in the first four years of the Dark Energy Survey (DES Y4) data exhibit azimuthal asymmetries that might be evidence of gravitational perturbations from an unseen super-Earth in a distant orbit. By rotating the orbits of the detected eTNOs, we construct a synthetic population that, when subject to the DES selection function, reproduces the detected distribution of eTNOs in the orbital elements a, e, and i as well as absolute magnitude H, but has uniform distributions in mean anomaly M, longitude of ascending node Ω, and argument of perihelion ω. We then compare the detected distributions in each of Ω, ω, and the longitude of perihelion {equation presented} to those expected from the isotropic population, using Kuiper's variant of the Kolmogorov-Smirnov test. The three angles are tested for each of four definitions of the eTNO population, choosing among a > (150, 250) au and perihelion q > (30, 37) au. These choices yield 3-7 eTNOs in the DES Y4 sample. Among the 12 total tests, two have the likelihood of drawing the observed angles from the isotropic population at p 250 and q > 37 au and the four detections at a > 250 and q > 30 au have a Ω distribution with p ≈ 0.03 coming from the isotropic construction, but this is not strong evidence of anisotropy given the 12 different tests. The DES data taken on their own are thus consistent with azimuthal isotropy and do not require a "Planet 9"hypothesis. The limited sky coverage and object count mean, however, that the DES data by no means falsify this hypothesis
Pseudomonas syringae pv. actinidiae (PSA) Isolates from Recent Bacterial Canker of Kiwifruit Outbreaks Belong to the Same Genetic Lineage
Intercontinental spread of emerging plant diseases is one of the most serious threats to world agriculture. One emerging disease is bacterial canker of kiwi fruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (PSA). The disease first occurred in China and Japan in the 1980s and in Korea and Italy in the 1990s. A more severe form of the disease broke out in Italy in 2008 and in additional countries in 2010 and 2011 threatening the viability of the global kiwi fruit industry. To start investigating the source and routes of international transmission of PSA, genomes of strains from China (the country of origin of the genus Actinidia), Japan, Korea, Italy and Portugal have been sequenced. Strains from China, Italy, and Portugal have been found to belong to the same clonal lineage with only 6 single nucleotide polymorphisms (SNPs) in 3,453,192 bp and one genomic island distinguishing the Chinese strains from the European strains. Not more than two SNPs distinguish each of the Italian and Portuguese strains from each other. The Japanese and Korean strains belong to a separate genetic lineage as previously reported. Analysis of additional European isolates and of New Zealand isolates exploiting genome-derived markers showed that these strains belong to the same lineage as the Italian and Chinese strains. Interestingly, the analyzed New Zealand strains are identical to European strains at the tested SNP loci but test positive for the genomic island present in the sequenced Chinese strains and negative for the genomic island present in the European strains. Results are interpreted in regard to the possible direction of movement of the pathogen between countries and suggest a possible Chinese origin of the European and New Zealand outbreaks
Poly I:C enhances cycloheximide-induced apoptosis of tumor cells through TLR3 pathway
<p>Abstract</p> <p>Background</p> <p>Toll-like receptor 3 (TLR3) is a critical component of the innate immune response to dsRNA viruses, which was considered to be mainly expressed in immune cells and some endothelial cells. In this study, we investigated the expression and proapoptotic activity of TLR3 in human and murine tumor cell lines.</p> <p>Methods</p> <p>RT-PCR and FACS analysis were used to detect expression of TLR3 in various human and murine tumor cell lines. All tumor cell lines were cultured with poly I:C, CHX, or both for 12 h, 24 h, 72 h, and then the cell viability was analyzed with CellTiter 96<sup>® </sup>AQueous One Solution, the apoptosis was measured by FACS with Annexin V and PI staining. Production of Type I IFN in poly I:C/CHX mediated apoptosis were detected through western blotting. TLR3 antibodies and IFN-β antibodies were used in Blockade and Neutralization Assay.</p> <p>Results</p> <p>We show that TLR3 are widely expressed on human and murine tumor cell lines, and activation of TLR3 signaling in cancerous cells by poly I:C made Hela cells (human cervical cancer) and MCA38 cells (murine colon cancer) become dose-dependently sensitive to protein synthesis inhibitor cycloheximide (CHX)-induced apoptosis. Blockade of TLR3 recognition with anti-TLR3 antibody greatly attenuated the proapoptotic effects of poly I:C on tumor cells cultured with CHX. IFN-β production was induced after poly I:C/CHX treatment and neutralization of IFN-β slightly reduced poly I:C/CHX -induced apoptosis.</p> <p>Conclusion</p> <p>Our study demonstrated the proapoptotic activity of TLR3 expressed by various tumor cells, which may open a new range of clinical applications for TLR3 agonists as an adjuvant of certain cancer chemotherapy.</p
Economic Impacts of Non-Native Forest Insects in the Continental United States
Reliable estimates of the impacts and costs of biological invasions are critical to developing credible management, trade and regulatory policies. Worldwide, forests and urban trees provide important ecosystem services as well as economic and social benefits, but are threatened by non-native insects. More than 450 non-native forest insects are established in the United States but estimates of broad-scale economic impacts associated with these species are largely unavailable. We developed a novel modeling approach that maximizes the use of available data, accounts for multiple sources of uncertainty, and provides cost estimates for three major feeding guilds of non-native forest insects. For each guild, we calculated the economic damages for five cost categories and we estimated the probability of future introductions of damaging pests. We found that costs are largely borne by homeowners and municipal governments. Wood- and phloem-boring insects are anticipated to cause the largest economic impacts by annually inducing nearly 830 million in lost residential property values. Given observations of new species, there is a 32% chance that another highly destructive borer species will invade the U.S. in the next 10 years. Our damage estimates provide a crucial but previously missing component of cost-benefit analyses to evaluate policies and management options intended to reduce species introductions. The modeling approach we developed is highly flexible and could be similarly employed to estimate damages in other countries or natural resource sectors
EBV Tegument Protein BNRF1 Disrupts DAXX-ATRX to Activate Viral Early Gene Transcription
Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV) typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs) and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs), suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus
Natural Cross Chlamydial Infection between Livestock and Free-Living Bird Species
The study of cross-species pathogen transmission is essential to understanding the epizootiology and epidemiology of infectious diseases. Avian chlamydiosis is a zoonotic disease whose effects have been mainly investigated in humans, poultry and pet birds. It has been suggested that wild bird species play an important role as reservoirs for this disease. During a comparative health status survey in common (Falco tinnunculus) and lesser (Falco naumanni) kestrel populations in Spain, acute gammapathies were detected. We investigated whether gammapathies were associated with Chlamydiaceae infections. We recorded the prevalence of different Chlamydiaceae species in nestlings of both kestrel species in three different study areas. Chlamydophila psittaci serovar I (or Chlamydophila abortus), an ovine pathogen causing late-term abortions, was isolated from all the nestlings of both kestrel species in one of the three studied areas, a location with extensive ovine livestock enzootic of this atypical bacteria and where gammapathies were recorded. Serovar and genetic cluster analysis of the kestrel isolates from this area showed serovars A and C and the genetic cluster 1 and were different than those isolated from the other two areas. The serovar I in this area was also isolated from sheep abortions, sheep faeces, sheep stable dust, nest dust of both kestrel species, carrion beetles (Silphidae) and Orthoptera. This fact was not observed in other areas. In addition, we found kestrels to be infected by Chlamydia suis and Chlamydia muridarum, the first time these have been detected in birds. Our study evidences a pathogen transmission from ruminants to birds, highlighting the importance of this potential and unexplored mechanism of infection in an ecological context. On the other hand, it is reported a pathogen transmission from livestock to wildlife, revealing new and scarcely investigated anthropogenic threats for wild and endangered species
Plate-based diversity subset screening generation 2: An improved paradigm for high throughput screening of large compound files
High throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time-consuming and costly and the use of subsets as an efficient alternative to screening these large collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity, or biological target focus. Previously we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer
- …