193 research outputs found
Validation of Twelve Small Kepler Transiting Planets in the Habitable Zone
We present an investigation of twelve candidate transiting planets from
Kepler with orbital periods ranging from 34 to 207 days, selected from initial
indications that they are small and potentially in the habitable zone (HZ) of
their parent stars. Few of these objects are known. The expected Doppler
signals are too small to confirm them by demonstrating that their masses are in
the planetary regime. Here we verify their planetary nature by validating them
statistically using the BLENDER technique, which simulates large numbers of
false positives and compares the resulting light curves with the Kepler
photometry. This analysis was supplemented with new follow-up observations
(high-resolution optical and near-infrared spectroscopy, adaptive optics
imaging, and speckle interferometry), as well as an analysis of the flux
centroids. For eleven of them (KOI-0571.05, 1422.04, 1422.05, 2529.02, 3255.01,
3284.01, 4005.01, 4087.01, 4622.01, 4742.01, and 4745.01) we show that the
likelihood they are true planets is far greater than that of a false positive,
to a confidence level of 99.73% (3 sigma) or higher. For KOI-4427.01 the
confidence level is about 99.2% (2.6 sigma). With our accurate characterization
of the GKM host stars, the derived planetary radii range from 1.1 to 2.7
R_Earth. All twelve objects are confirmed to be in the HZ, and nine are small
enough to be rocky. Excluding three of them that have been previously validated
by others, our study doubles the number of known rocky planets in the HZ.
KOI-3284.01 (Kepler-438b) and KOI-4742.01 (Kepler-442b) are the planets most
similar to the Earth discovered to date when considering their size and
incident flux jointly.Comment: 27 pages in emulateapj format, including tables and figures. To
appear in The Astrophysical Journa
Dynamic systems modeling to identify a cohort of problem drinkers with similar mechanisms of behavior change
One challenge to understanding mechanisms of behavior change (MOBC) completely among individuals with alcohol use disorder is that processes of change are theorized to be complex, dynamic (time varying), and at times non-linear, and they interact with each other to influence alcohol consumption. We used dynamical systems modeling to better understand MOBC within a cohort of problem drinkers undergoing treatment. We fit a mathematical model to ecological momentary assessment data from individual patients who successfully reduced their drinking by the end of the treatment. The model solutions agreed with the trend of the data reasonably well, suggesting the cohort patients have similar MOBC. This work demonstrates using a personalized approach to psychological research, which complements standard statistical approaches that are often applied at the population level
Airglow and Aurorae at Dome A, Antarctica
Despite the absence of artificial light pollution at Antarctic plateau sites such as Dome A, other factors such as airglow, aurorae, and extended periods of twilight have the potential to adversely affect optical observations. We present a statistical analysis of the airglow and aurorae at Dome A using spectroscopic data from Nigel, an optical/near-IR spectrometer operating in the 300–850 nm range. These data complement photometric images from Gattini, a wide-field (90°) CCD camera with B, V, and R filters, allowing the background sky brightness to be disentangled from the various airglow and auroral emission lines. The median auroral contribution to the B, V, and R photometric bands is found to be 22.9, 23.4, and 23.0 mag arcsec^(-2), respectively. Auroral emissions most frequently occur between 10–23 hr local time, when up to 50% of observations are above airglow-level intensities. While infrequent, the strongest emissions detected occurred in the hours just prior to magnetic midnight. We are also able to quantify the amount of annual dark time available as a function of wavelength, as well as in the standard BVR photometric bands. On average, twilight ends when the Sun reaches a zenith distance of 102.6°
Validation of Small Kepler Transiting Planet Candidates in or near the Habitable Zone
A main goal of NASA's Kepler Mission is to establish the frequency of potentially habitable Earth-size planets (η⊕). Relatively few such candidates identified by the mission can be confirmed to be rocky via dynamical measurement of their mass. Here we report an effort to validate 18 of them statistically using the BLENDER technique, by showing that the likelihood they are true planets is far greater than that of a false positive. Our analysis incorporates follow-up observations including high-resolution optical and near-infrared spectroscopy, high-resolution imaging, and information from the analysis of the flux centroids of the Kepler observations themselves. Although many of these candidates have been previously validated by others, the confidence levels reported typically ignore the possibility that the planet may transit a star different from the target along the same line of sight. If that were the case, a planet that appears small enough to be rocky may actually be considerably larger and therefore less interesting from the point of view of habitability. We take this into consideration here and are able to validate 15 of our candidates at a 99.73% (3σ) significance level or higher, and the other three at a slightly lower confidence. We characterize the GKM host stars using available ground-based observations and provide updated parameters for the planets, with sizes between 0.8 and 2.9 R⊕. Seven of them (KOI-0438.02, 0463.01, 2418.01, 2626.01, 3282.01, 4036.01, and 5856.01) have a better than 50% chance of being smaller than 2 R⊕ and being in the habitable zone of their host stars
Transit Timing Observations from Kepler: III. Confirmation of 4 Multiple Planet Systems by a Fourier-Domain Study of Anti-correlated Transit Timing Variations
We present a method to confirm the planetary nature of objects in systems
with multiple transiting exoplanet candidates. This method involves a
Fourier-Domain analysis of the deviations in the transit times from a constant
period that result from dynamical interactions within the system. The
combination of observed anti-correlations in the transit times and mass
constraints from dynamical stability allow us to claim the discovery of four
planetary systems Kepler-25, Kepler-26, Kepler-27, and Kepler-28, containing
eight planets and one additional planet candidate.Comment: Accepted to MNRA
Kepler-21b: A 1.6REarth Planet Transiting the Bright Oscillating F Subgiant Star HD 179070
We present Kepler observations of the bright (V=8.3), oscillating star HD
179070. The observations show transit-like events which reveal that the star is
orbited every 2.8 days by a small, 1.6 R_Earth object. Seismic studies of HD
179070 using short cadence Kepler observations show that HD 179070 has a
frequencypower spectrum consistent with solar-like oscillations that are
acoustic p-modes. Asteroseismic analysis provides robust values for the mass
and radius of HD 179070, 1.34{\pm}0.06 M{\circ} and 1.86{\pm}0.04 R{\circ}
respectively, as well as yielding an age of 2.84{\pm}0.34 Gyr for this F5
subgiant. Together with ground-based follow-up observations, analysis of the
Kepler light curves and image data, and blend scenario models, we
conservatively show at the >99.7% confidence level (3{\sigma}) that the transit
event is caused by a 1.64{\pm}0.04 R_Earth exoplanet in a 2.785755{\pm}0.000032
day orbit. The exoplanet is only 0.04 AU away from the star and our
spectroscopic observations provide an upper limit to its mass of ~10 M_Earth
(2-{\sigma}). HD 179070 is the brightest exoplanet host star yet discovered by
Kepler.Comment: Accepted to Ap
Planetary Candidates Observed by Kepler, III: Analysis of the First 16 Months of Data
New transiting planet candidates are identified in sixteen months (May 2009 -
September 2010) of data from the Kepler spacecraft. Nearly five thousand
periodic transit-like signals are vetted against astrophysical and instrumental
false positives yielding 1,091 viable new planet candidates, bringing the total
count up to over 2,300. Improved vetting metrics are employed, contributing to
higher catalog reliability. Most notable is the noise-weighted robust averaging
of multi-quarter photo-center offsets derived from difference image analysis
which identifies likely background eclipsing binaries. Twenty-two months of
photometry are used for the purpose of characterizing each of the new
candidates. Ephemerides (transit epoch, T_0, and orbital period, P) are
tabulated as well as the products of light curve modeling: reduced radius
(Rp/R*), reduced semi-major axis (d/R*), and impact parameter (b). The largest
fractional increases are seen for the smallest planet candidates (197% for
candidates smaller than 2Re compared to 52% for candidates larger than 2Re) and
those at longer orbital periods (123% for candidates outside of 50-day orbits
versus 85% for candidates inside of 50-day orbits). The gains are larger than
expected from increasing the observing window from thirteen months (Quarter 1--
Quarter 5) to sixteen months (Quarter 1 -- Quarter 6). This demonstrates the
benefit of continued development of pipeline analysis software. The fraction of
all host stars with multiple candidates has grown from 17% to 20%, and the
paucity of short-period giant planets in multiple systems is still evident. The
progression toward smaller planets at longer orbital periods with each new
catalog release suggests that Earth-size planets in the Habitable Zone are
forthcoming if, indeed, such planets are abundant.Comment: Submitted to ApJS. Machine-readable tables are available at
http://kepler.nasa.gov, http://archive.stsci.edu/kepler/results.html, and the
NASA Exoplanet Archiv
TOI-4641b: An Aligned Warm Jupiter Orbiting a Bright (V=7.5) Rapidly Rotating F-star
We report the discovery of TOI-4641b, a warm Jupiter transiting a rapidly
rotating F-type star with a stellar effective temperature of 6560 K. The planet
has a radius of 0.73 , a mass smaller than 3.87 ,
and a period of 22.09 days. It is orbiting a bright star (V=7.5 mag) on a
circular orbit with a radius and mass of 1.73 and 1.41 .
Follow-up ground-based photometry was obtained using the Tierras Observatory.
Two transits were also observed with the Tillinghast Reflector Echelle
Spectrograph (TRES), revealing the star to have a low projected spin-orbit
angle (= degrees). Such obliquity measurements
for stars with warm Jupiters are relatively few, and may shed light on the
formation of warm Jupiters. Among the known planets orbiting hot and
rapidly-rotating stars, TOI-4641b is one of the longest-period planets to be
thoroughly characterized. Unlike hot Jupiters around hot stars which are more
often misaligned, the warm Jupiter TOI-4641b is found in a well-aligned orbit.
Future exploration of this parameter space can add one more dimension to the
star-planet orbital obliquity distribution that has been well-sampled for hot
Jupiters.Comment: Accepted MNRA
Masses, radii, and orbits of small Kepler planets : The transition from gaseous to rocky planets
We report on the masses, sizes, and orbits of the planets orbiting 22 Kepler stars. There are 49 planet candidates around these stars, including 42 detected through transits and 7 revealed by precise Doppler measurements of the host stars. Based on an analysis of the Kepler brightness measurements, along with high-resolution imaging and spectroscopy, Doppler spectroscopy, and (for 11 stars) asteroseismology, we establish low false-positive probabilities (FPPs) for all of the transiting planets (41 of 42 have an FPP under 1%), and we constrain their sizes and masses. Most of the transiting planets are smaller than three times the size of Earth. For 16 planets, the Doppler signal was securely detected, providing a direct measurement of the planet's mass. For the other 26 planets we provide either marginal mass measurements or upper limits to their masses and densities; in many cases we can rule out a rocky composition. We identify six planets with densities above 5 g cm-3, suggesting a mostly rocky interior for them. Indeed, the only planets that are compatible with a purely rocky composition are smaller than 2 R ⊕. Larger planets evidently contain a larger fraction of low-density material (H, He, and H2O).Peer reviewedFinal Accepted Versio
- …