138 research outputs found
Explaining Delinquent Behavior Among Adolescent Girls: Internal Social Control and Differential Association
Questionnaires were completed by ninety girls participating in a therapeutic wilderness program. Indexes were constructed of problems in school, sexual activities, drug and alcohol use, violent acts, major property offenses, minor property offenses, and miscellaneous misdemeanors. Measures of internal social control were of attachment to parents and to school, commitment to educational goals, involvement in homework, beliefs about drug use, and respect for the law. Differential association was measured by questions about friends\u27 behaviors. The combined influence of internal social control as a barrier to deviance and differential association as a push toward deviance was examined. Theories used earlier to explain delinquency among boys generally worked well in identifying the correlates of deviant behavior among these adolescent girls, though results varied for the different types of deviance considered. Implications of results for program development are discussed
Southern hemisphere plants show more delays than advances in flowering phenology
Shifts in flowering phenology have been studied in detail in the northern hemisphere and are a key plant response to climate change. However, there are relatively fewer data on species' phenological shifts in the southern hemisphere.
We combined historic field data, data from herbarium specimens dating back to 1842 and modern field data for 37 Australian species to determine whether species were flowering earlier in the year than they had in the past. We also combined our results with data compiled in the southern and northern hemispheres, respectively, to determine whether southern hemisphere species are showing fewer advances in flowering phenology through time.
Across our study species, we found that 12 species had undergone significant shifts in flowering time, with four species advancing their flowering and eight species delaying their flowering. The remaining 25 species showed no significant shifts in their flowering phenology. These findings are important because delays or lack of shifts in flowering phenology can lead to mismatches in trophic interactions between plants and pollinators or seed dispersers, which can have substantial impacts on ecosystem functioning and primary productivity. Combining our field results with data compiled from the literature showed that only 58.5% of southern hemisphere species were advancing their flowering time, compared with 81.6% of species that were advancing their flowering time in the northern hemisphere. Our study provides further evidence that it is not adequate for ecologists to assume that southern hemisphere ecosystems will respond to future climate change in the same way as ecosystems north of the Equator.
Synthesis. Field data and data from the literature indicate that southern hemisphere species are showing fewer advances in their flowering phenology through time, especially in comparison to northern hemisphere species
Mitigation of the instrumental noise transient in gravitational-wave data surrounding GW170817
In the coming years gravitational-wave detectors will undergo a series of
improvements, with an increase in their detection rate by about an order of
magnitude. Routine detections of gravitational-wave signals promote novel
astrophysical and fundamental theory studies, while simultaneously leading to
an increase in the number of detections temporally overlapping with
instrumentally- or environmentally-induced transients in the detectors
(glitches), often of unknown origin. Indeed, this was the case for the very
first detection by the LIGO and Virgo detectors of a gravitational-wave signal
consistent with a binary neutron star coalescence, GW170817. A loud glitch in
the LIGO-Livingston detector, about one second before the merger, hampered
coincident detection (which was initially achieved solely with LIGO-Hanford
data). Moreover, accurate source characterization depends on specific
assumptions about the behavior of the detector noise that are rendered invalid
by the presence of glitches. In this paper, we present the various techniques
employed for the initial mitigation of the glitch to perform source
characterization of GW170817 and study advantages and disadvantages of each
mitigation method. We show that, despite the presence of instrumental noise
transients louder than the one affecting GW170817, we are still able to produce
unbiased measurements of the intrinsic parameters from simulated injections
with properties similar to GW170817.Comment: 11 pages, 3 figures, accepted in PR
Genomic and Molecular Landscape of DNA Damage Repair Deficiency across The Cancer Genome Atlas
DNA damage repair (DDR) pathways modulate cancer risk, progression, and therapeutic response. We systematically analyzed somatic alterations to provide a comprehensive view of DDR deficiency across 33 cancer types. Mutations with accompanying loss of heterozygosity were observed in over 1/3 of DDR genes, including TP53 and BRCA1/2. Other prevalent alterations included epigenetic silencing of the direct repair genes EXO5, MGMT, and ALKBH3 in ∼20% of samples. Homologous recombination deficiency (HRD) was present at varying frequency in many cancer types, most notably ovarian cancer. However, in contrast to ovarian cancer, HRD was associated with worse outcomes in several other cancers. Protein structure-based analyses allowed us to predict functional consequences of rare, recurrent DDR mutations. A new machine-learning-based classifier developed from gene expression data allowed us to identify alterations that phenocopy deleterious TP53 mutations. These frequent DDR gene alterations in many human cancers have functional consequences that may determine cancer progression and guide therapy
CD or not CD, that is the question - a digital interobserver agreement study in coeliac disease
OBJECTIVE: Coeliac disease (CD) diagnosis generally depends on histological examination of duodenal biopsies. We present the first study analysing the concordance in examination of duodenal biopsies using digitised whole-slide images (WSIs). We further investigate whether the inclusion of IgA tTG and haemoglobin (Hb) data improves the inter-observer agreement of diagnosis.DESIGN: We undertook a large study of the concordance in histological examination of duodenal biopsies using digitised WSIs in an entirely virtual reporting setting. Our study was organised in two phases: in phase one, 13 pathologists independently classified 100 duodenal biopsies (40 normal; 40 CD; 20 indeterminate enteropathy) in the absence of any clinical or laboratory data. In phase two, the same pathologists examined the (re-anonymised) WSIs with the inclusion of IgA tTG and Hb data.RESULTS: We found the mean probability of two observers agreeing in the absence of additional data to be 0.73 (±0.08) with a corresponding Cohen's kappa of 0.59 (±0.11). We further showed that the inclusion of additional data increased the concordance to 0.80 (±0.06) with a Cohen's kappa coefficient of 0.67 (±0.09).CONCLUSION: We showed that the addition of serological data significantly improves the quality of CD diagnosis. However, the limited inter-observer agreement in CD diagnosis using digitised WSIs, even after the inclusion of IgA tTG and Hb data, indicates the important of interpreting duodenal biopsy in the appropriate clinical context. It further highlights the unmet need for an objective means of reproducible duodenal biopsy diagnosis, such as the automated analysis of WSIs using AI.<br/
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
- …