48 research outputs found

    Enzymatic biotransformation of adipic acid to 6-aminocaproic acid and 1,6- hexamethylenediamine using engineered carboxylic acid reductases and aminotransferases

    Get PDF
    Biocatalytic reduction of carboxylic acids is gaining importance for the production of polymer precursors and different chemicals. Carboxylic acid reductases (CARs) reduce carboxylic acids to aldehydes using ATP and NADPH as cofactors under mild conditions. Recently, we demonstrated that several bacterial CARs can reduce a broad range of bifunctional carboxylic acids containing amino group or second carboxylic group including adipic acid, which is a precursor for nylon-6-6 (Khusnutdinova et al., 2017). In this project, we demonstrate application of CARs and aminotransferases for further bioconversion of adipic acid to 6-aminocaproic acid and hexamethylenediamine, two other important precursors for nylon synthesis. Based on the crystal structure of the adenylating domain of the CAR enzyme MCH22995 from Mycobacterium chelonae, we generated a structural model of the CAR enzyme MAB4714 from M. abscessus, which is active toward adipic acid. Aiming at improving MAB4714 activity toward 6-aminocaproic acid, we used structure-based protein engineering and generated 16 MAB4714 mutant proteins. Screening of 16 purified MAB4714 variants against 6-aminocaproic acid,identified one protein, which was 10 times more active than the wild-type protein. We also identified several bacterial aminotransferases producing 6-aminocaproic acid from adipic acid in combination with CARs. Further optimization of reaction conditions and application of cofactor regeneration systems resulted in efficient biotransformation of adipic acid to 6-aminocaproic acid (88% conversion) and further to 1,6-hexamethylenediamine (78% conversion). Please click Additional Files below to see the full abstract

    Identification and characterization of a large family of superbinding bacterial SH2 domains

    Get PDF
    Src homology 2 (SH2) domains play a critical role in signal transduction in mammalian cells by binding to phosphorylated Tyr (pTyr). Apart from a few isolated cases in viruses, no functional SH2 domain has been identified to date in prokaryotes. Here we identify 93 SH2 domains from Legionella that are distinct in sequence and specificity from mammalian SH2 domains. The bacterial SH2 domains are not only capable of binding proteins or peptides in a Tyr phosphorylation-dependent manner, some bind pTyr itself with micromolar affinities, a property not observed for mammalian SH2 domains. The Legionella SH2 domains feature the SH2 fold and a pTyr-binding pocket, but lack a specificity pocket found in a typical mammalian SH2 domain for recognition of sequences flanking the pTyr residue. Our work expands the boundary of phosphotyrosine signalling to prokaryotes, suggesting that some bacterial effector proteins have acquired pTyr-superbinding characteristics to facilitate bacterium-host interactions

    Structure of SAICAR synthase from Thermotoga maritima at 2.2 Å reveals an unusual covalent dimer

    Get PDF
    The crystal structure of phophoribosylaminoimidazole-succinocarboxamide or SAICAR synthase from T. maritima at 2.2 Å revealed an unusual covalent dimer

    Structural and biochemical studies of novel Aldo-keto Reductases (AKRs) for the biocatalytic conversion of 3-hydroxybutanal to 1,3-butanediol

    Get PDF
    The non-natural alcohol 1,3-butanediol (1,3-BDO) is a valuable building block for the synthesis of various polymers. One of the potential pathways for the biosynthesis of 1,3-BDO includes the biotransformation of acetaldehyde to 1,3-BDO via 3-hydroxybutanal (3-HB) using aldolases and aldo-keto reductases. This pathway requires an aldo-keto reductase (AKR) selective for 3-HB, but inactive toward acetaldehyde, so it can be used for one pot synthesis. In this work, we screened over 20 purified uncharacterized AKRs for 3-HB reduction and identified 10 enzymes with significant activity and nine proteins with detectable activity. PA1127 from Pseudomonas aeruginosa showed the highest activity and was selected for comparative studies with STM2406 from Salmonella typhimurium, for which we have determined the crystal structure. Both AKRs used NADPH as cofactor, reduced a broad range of aldehydes, and showed low activity toward acetaldehyde. The crystal structures of STM2406 in complex with cacodylate or NADPH revealed the active site with bound molecules of a substrate mimic or cofactor. Site-directed mutagenesis of STM2406 and PA1127 identified the key residues important for activity against 3-HB and aromatic aldehydes, which include the residues of the substrate binding pocket and C-terminal loop. Our results revealed that the replacement of the STM2406 Asn65 by Met enhanced both activity and affinity of this protein toward 3-HB resulting in a seven-fold increase in kcat/Km. Our work provided further insights into the molecular mechanisms of substrate selectivity of AKRs and rational design of these enzymes towards new substrates. Importance In this study, we identified several aldo-keto reductases with significant activity in the reduction of 3-hydroxybutanal to 1,3-BDO, an important commodity chemical. Biochemical and structural studies of these enzymes revealed the key catalytic and substrate binding residues including the two structural determinants necessary for high activity in the biosynthesis of 1,3-BDO. This work expands our understanding of the molecular mechanisms of substrate selectivity of AKRs and the potential for protein engineering of these enzymes for applications in the biocatalytic production of 1,3-BDO and other valuable chemicals

    Structural and molecular rationale for the diversification of resistance mediated by the Antibiotic_NAT family

    Get PDF
    The environmental microbiome harbors a vast repertoire of antibiotic resistance genes (ARGs) which can serve as evolutionary predecessors for ARGs found in pathogenic bacteria, or can be directly mobilized to pathogens in the presence of selection pressures. Thus, ARGs from benign environmental bacteria are an important resource for understanding clinically relevant resistance. Here, we conduct a comprehensive functional analysis of the Antibiotic_NAT family of aminoglycoside acetyltransferases. We determined a pan-family antibiogram of 21 Antibiotic_NAT enzymes, including 8 derived from clinical isolates and 13 from environmental metagenomic samples. We find that environment-derived representatives confer high-level, broad-spectrum resistance, including against the atypical aminoglycoside apramycin, and that a metagenome-derived gene likely is ancestral to an aac(3) gene found in clinical isolates. Through crystallographic analysis, we rationalize the molecular basis for diversification of substrate specificity across the family. This work provides critical data on the molecular mechanism underpinning resistance to established and emergent aminoglycoside antibiotics and broadens our understanding of ARGs in the environment

    Large-scale screening of preferred interactions of human src homology-3 (SH3) domains using native target proteins as affinity ligands

    Get PDF
    The Src Homology-3 (SH3) domains are ubiquitous protein modules that mediate important intracellular protein interactions via binding to short proline-rich consensus motifs in their target proteins. The affinity and specificity of such core SH3-ligand contacts are typically modest, but additional binding interfaces can give rise to stronger and more specific SH3-mediated interactions. To understand how commonly such robust SH3 interactions occur in the human protein interactome, and to identify these in an unbiased manner we have expressed 324 predicted human SH3 ligands as full-length proteins in mammalian cells, and screened for their preferred SH3 partners using a phage display-based approach. This discovery platform contains an essentially complete repertoire of the ∼300 human SH3 domains, and involves an inherent binding threshold that ensures selective identification of only SH3 interactions with relatively high affinity. Such strong and selective SH3 partners could be identified for only 19 of these 324 predicted ligand proteins, suggesting that the majority of human SH3 interactions are relatively weak, and thereby have capacity for only modest inherent selectivity. The panel of exceptionally robust SH3 interactions identified here provides a rich source of leads and hypotheses for further studies. However, a truly comprehensive characterization of the human SH3 interactome will require novel high-throughput methods based on function instead of absolute binding affinity

    Epitope-specific antibody responses differentiate COVID-19 outcomes and variants of concern

    Get PDF
    BACKGROUND. The role of humoral immunity in COVID-19 is not fully understood, owing, in large part, to the complexity of antibodies produced in response to the SARS-CoV-2 infection. There is a pressing need for serology tests to assess patient-specific antibody response and predict clinical outcome. METHODS. Using SARS-CoV-2 proteome and peptide microarrays, we screened 146 COVID-19 patients’ plasma samples to identify antigens and epitopes. This enabled us to develop a master epitope array and an epitope-specific agglutination assay to gauge antibody responses systematically and with high resolution. RESULTS. We identified linear epitopes from the spike (S) and nucleocapsid (N) proteins and showed that the epitopes enabled higher resolution antibody profiling than the S or N protein antigen. Specifically, we found that antibody responses to the S-811–825, S-881–895, and N-156–170 epitopes negatively or positively correlated with clinical severity or patient survival. Moreover, we found that the P681H and S235F mutations associated with the coronavirus variant of concern B.1.1.7 altered the specificity of the corresponding epitopes. CONCLUSION. Epitope-resolved antibody testing not only affords a high-resolution alternative to conventional immunoassays to delineate the complex humoral immunity to SARS-CoV-2 and differentiate between neutralizing and non-neutralizing antibodies, but it also may potentially be used to predict clinical outcome. The epitope peptides can be readily modified to detect antibodies against variants of concern in both the peptide array and latex agglutination formats. FUNDING. Ontario Research Fund (ORF) COVID-19 Rapid Research Fund, Toronto COVID-19 Action Fund, Western University, Lawson Health Research Institute, London Health Sciences Foundation, and Academic Medical Organization of Southwestern Ontario (AMOSO) Innovation Fund
    corecore