123 research outputs found

    Model-Independent Bound on the Dark Matter Lifetime

    Get PDF
    If dark matter (DM) is unstable, in order to be present today, its lifetime needs to be longer than the age of the Universe, t_U ~ 4 10^{17} s. It is usually assumed that if DM decays it would do it with some strength through a radiative mode. In this case, very constraining limits can be obtained from observations of the diffuse gamma ray background. However, although reasonable, this is a model-dependent assumption. Here our only assumption is that DM decays into, at least, one Standard Model (SM) particle. Among these, neutrinos are the least detectable ones. Hence, if we assume that the only SM decay daughters are neutrinos, a limit on their flux from DM decays in the Milky Way sets a conservative, but stringent and model-independent bound on its lifetime.Comment: 4 pp, 1 fig; published version with extended discussion, updated figure and added reference

    Thermoregulatory, metabolic, and cardiovascular responses during 88 min of full-body ice immersion - A case study.

    Get PDF
    Exposure to extreme cold environments is potentially life-threatening. However, the world record holder of full-body ice immersion has repeatedly demonstrated an extraordinary tolerance to extreme cold. We aimed to explore thermoregulatory, metabolic, and cardiovascular responses during 88 min of full-body ice immersion. We continuously measured gastrointestinal temperature (Tgi ), skin temperature (Tskin), blood pressure, and heart rate (HR). Oxygen consumption (VO2 ) was measured at rest, and after 45 and 88 min of ice immersion, in order to calculate the metabolic heat production. Tskin dropped significantly (28-34°C to 4-15°C) and VO2 doubled (5.7-11.3 ml kg-1  min-1 ), whereas Tgi (37.6°C), HR (72 bpm), and mean arterial pressure (106 mmHg) remained stable during the first 30 min of cold exposure. During the remaining of the trial, Tskin and VO2 remained stable, while Tgi gradually declined to 37.0°C and HR and mean arterial blood pressure increased to maximum values of 101 bpm and 115 mmHg, respectively. Metabolic heat production in rest was 169 W and increased to 321 W and 314 W after 45 and 80 min of ice immersion. Eighty-eight minutes of full-body ice immersion resulted in minor changes of Tgi and cardiovascular responses, while Tskin and VO2 changed markedly. These findings may suggest that our participant can optimize his thermoregulatory, metabolic, and cardiovascular responses to challenge extreme cold exposure

    Computational analysis of transitional airflow through packed columns of spheres using the finite volume technique

    Get PDF
    Copyright © 2010 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Computers and Chemical Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computers and Chemical Engineering, Volume 34 Issue 6 (2010), DOI: 10.1016/j.compchemeng.2009.10.013We compare computational simulations of the flow of air through a packed column containing spherical particles with experimental and theoretical results for equivalent beds. The column contained 160 spherical particles at an aspect ratio N=7.14N=7.14, and the experiments and simulations were carried out at particle Reynolds numbers of (RedP=700−5000)(RedP=700−5000). Experimental measurements were taken of the pressure drop across the column and compared with the correlation of Reichelt (1972) using the fitted coefficients of Eisfeld and Schnitzlein (2001). An equivalent computational domain was prepared using Monte Carlo packing, from which computational meshes were generated and analysed in detail. Computational fluid dynamics calculations of the air flow through the simulated bed was then performed using the finite volume technique. Results for pressure drop across the column were found to correlate strongly with the experimental data and the literature correlation. The flow structure through the bed was also analysed in detail

    Dothistroma needle blight, weather and possible climatic triggers for the disease's recent emergence

    Get PDF
    Dothistroma needle blight (DNB), caused by the two fungi Dothistroma septosporum and D. pini, is a major disease of pines with a worldwide distribution. Increases in the incidence and severity of disease in areas where the disease has long been established and notable range expansions have both recently been observed. The aim of this review was to assess the relationship between DNB, weather factors and climate to better understand possible underlying causes of this recent intensification in disease. A substantial body of literature shows that the life cycles of the fungi are closely related to weather factors such as precipitation and temperature. Given the rapid response of DNB to favourable weather conditions, it seems plausible that changes in disease behaviour could be due to changes in climate. The recurrent El Ni~no-Southern oscillation (ENSO) phenomenon influences patterns of temperature and precipitation in many regions of the world, often resulting in warmer and wetter conditions than normal. We found that since the 1950s, four of the past five strong El Ni~no events appear to have coincided with reports of increased DNB activity on an intercontinental scale. The lack of long-term standardized data records limits our ability to fully interpret this relationship, but the projected future climatic conditions in the Northern Hemisphere appear to be increasingly favourable for the disease. Still, other areas of the world may become less favourable, and further research is required to be able to accurately predict DNB outbreaks and their impact on pine forests in the future.info:eu-repo/semantics/publishedVersio

    Atheism Considered as a Christian Sect

    Get PDF
    AbstractAtheists in general need share no particular political or metaphysical views, but atheists of the most modern, Western, militant sort, escaping from a merely nihilistic mind-set, are usually humanists of an especially triumphalist kind. In this paper I offer a critical analysis and partial history of their claims, suggesting that they are members of a distinctively Christian heretical sect, formed in reaction to equally heretical forms of monotheistic idolatry.</jats:p

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The fairy-faith in Celtic countries : its psychical origin and nature

    No full text
    by Walter Yeeling Evans WentzZugl.: Rennes, Univ., Diss., 190

    The value of eliciting dreams in general psychiatry

    No full text
    • 

    corecore