2 research outputs found

    Development and validation of an Onchocerca ochengi adult male worm gerbil model for macrofilaricidal drug screening.

    No full text
    BACKGROUND:Onchocerciasis currently afflicts an estimated 15 million people and is the second leading infectious cause of blindness world-wide. The development of a macrofilaricide to cure the disease has been hindered by the lack of appropriate small laboratory animal models. This study therefore, was aimed at developing and validating the Mongolian gerbil, as an Onchocerca ochengi (the closest in phylogeny to O. volvulus) adult male worm model. METHODOLOGY/PRINCIPAL FINDINGS:Mongolian gerbils (Meriones unguiculatus) were each implanted with 20 O. ochengi male worms (collected from infected cattle), in the peritoneum. Following drug or placebo treatments, the implanted worms were recovered from the animals and analyzed for burden, motility and viability. Worm recovery in control gerbils was on average 35%, with 89% of the worms being 100% motile. Treatment of the gerbils implanted with male worms with flubendazole (FBZ) resulted in a significant reduction (p = 0.0021) in worm burden (6.0% versus 27.8% in the control animals); all recovered worms from the treated group had 0% worm motility versus 91.1% motility in control animals. FBZ treatment had similar results even after four different experiments. Using this model, we tested a related drug, oxfendazole (OFZ), and found it to also significantly (p = 0.0097) affect worm motility (22.7% versus 95.0% in the control group). CONCLUSIONS/SIGNIFICANCE:We have developed and validated a novel gerbil O. ochengi adult male worm model for testing new macrofilaricidal drugs in vivo. It was also used to determine the efficacy of oxfendazole in vivo

    Synthesis, Characterization, Cyclic Voltammetry, and Biological Studies of Co(II), Ni(II), and Cu(II) Complexes of a Tridentate Schiff Base, 1-((E)-(2-Mercaptophenylimino) Methyl) Naphthalen-2-ol (H2L1)

    No full text
    A novel tridentate Schiff base, 1-((E)-(2-mercaptophenylimino) methyl) naphthalen-2-ol (H2L1), was synthesized by the condensation reaction of 2-hydroxy-1-naphthaldehyde with 2-aminothiophenol in absolute ethanol. The resulting ligand was reacted with Co(II), Ni(II), and Cu(II) ions to obtain tetrahedral CoL1, NiL1, and square planar CuL1 complexes. The Schiff base and its metal complexes were characterized using 1H-NMR, microanalysis, FT-IR, UV-visible, and mass spectroscopy (ESI-MS). All the compounds are soluble in DMSO and DMF. Spectroscopic studies show that the ligand coordinates to the metal center through the azomethine nitrogen, naphthoxide oxygen, and thiophenoxide sulfur to form a tridentate chelate system. Conductance measurements show that these compounds are molecular in solution. Cyclic voltammetry studies show Co(III)/Co(II) and Cu(II)/Cu(I) redox systems to be quasi-reversible involving a monoelectronic transfer while Ni(III)/Ni(II) was irreversible. In vitro antibacterial and antifungal activity against five bacterial strains (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, and Proteus mirabilis) and five fungal strains (Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, and Candida parapsilosis) showed no antifungal activity but moderate antibacterial activity on E. coli, S. aureus, P. aeruginosa, and P. mirabilis bacterial strains. Antioxidant studies reveal that the ligand and its Cu(II) complex are more potent than Co(II) and Ni(II) complexes to eliminate free radicals
    corecore