2 research outputs found

    Towards a Holographic Model of the QCD Phase Diagram

    Full text link
    We describe the temperature-chemical potential phase diagrams of holographic models of a range of strongly coupled gauge theories that display chiral symmetry breaking/restoration transitions. The models are based on the D3/probe-D7 system but with a phenomenologically chosen running coupling/dilaton profile. We realize chiral phase transitions with either temperature or density that are first or second order by changing the dilaton profile. Although the models are only caricatures of QCD they show that holographic models can capture many aspects of the QCD phase diagram and hint at the dependence on the running coupling.Comment: 11 pages, 9 figures, v2: minor corrections, Invited contribution to an AdS/CFT edition of Journal of Physics

    Magnetic Field Induced Quantum Criticality via new Asymptotically AdS_5 Solutions

    Full text link
    Using analytical methods, we derive and extend previously obtained numerical results on the low temperature properties of holographic duals to four-dimensional gauge theories at finite density in a nonzero magnetic field. We find a new asymptotically AdS_5 solution representing the system at zero temperature. This solution has vanishing entropy density, and the charge density in the bulk is carried entirely by fluxes. The dimensionless magnetic field to charge density ratio for these solutions is bounded from below, with a quantum critical point appearing at the lower bound. Using matched asymptotic expansions, we extract the low temperature thermodynamics of the system. Above the critical magnetic field, the low temperature entropy density takes a simple form, linear in the temperature, and with a specific heat coefficient diverging at the critical point. At the critical magnetic field, we derive the scaling law s ~ T^{1/3} inferred previously from numerical analysis. We also compute the full scaling function describing the region near the critical point, and identify the dynamical critical exponent: z=3. These solutions are expected to holographically represent boundary theories in which strongly interacting fermions are filling up a Fermi sea. They are fully top-down constructions in which both the bulk and boundary theories have well known embeddings in string theory.Comment: 50 page
    corecore