114,862 research outputs found
Phase Transitions in one-dimensional nonequilibrium systems
The phenomenon of phase transitions in one-dimensional systems is discussed.
Equilibrium systems are reviewed and some properties of an energy function
which may allow phase transitions and phase ordering in one dimension are
identified. We then give an overview of the one-dimensional phase transitions
which we have been studied in nonequilibrium systems. A particularly simple
model, the zero-range process, for which the steady state is know exactly as a
product measure, is discussed in some detail. Generalisations of the model, for
which a product measure still holds, are also discussed. We analyse in detail a
condensation phase transition in the model and show how conditions under which
it may occur may be related to the existence of an effective long-range energy
function. Although the zero-range process is not well known within the physics
community, several nonequilibrium models have been proposed that are examples
of a zero-range process, or closely related to it, and we review these
applications here.Comment: latex, 28 pages, review article; references update
Condensation Transitions in Nonequilibrium systems
Systems driven out of equilibrium can often exhibit behaviour not seen in
systems in thermal equilibrium- for example phase transitions in
one-dimensional systems. In this talk I will review several `condensation'
transitions that occur when a conserved quantity is driven through the system.
Although the condensation is spatial, i.e. a finite fraction of the conserved
quantity condenses into a small spatial region, useful comparison can be made
with usual Bose-Einstein condensation. Amongst some one-dimensional examples I
will discuss the `Bus Route Model' where the condensation corresponds to the
clustering together of buses moving along a bus-route.Comment: 10 pages. Lecture from TH-2002, Pari
Factorised steady states for multi-species mass transfer models
A general class of mass transport models with Q species of conserved mass is
considered. The models are defined on a lattice with parallel discrete time
update rules. For one-dimensional, totally asymmetric dynamics we derive
necessary and sufficient conditions on the mass transfer dynamics under which
the steady state factorises. We generalise the model to mass transfer on
arbitrary lattices and present sufficient conditions for factorisation. In both
cases, explicit results for random sequential update and continuous time limits
are given.Comment: 11 page
Criticality and Condensation in a Non-Conserving Zero Range Process
The Zero-Range Process, in which particles hop between sites on a lattice
under conserving dynamics, is a prototypical model for studying real-space
condensation. Within this model the system is critical only at the transition
point. Here we consider a non-conserving Zero-Range Process which is shown to
exhibit generic critical phases which exist in a range of creation and
annihilation parameters. The model also exhibits phases characterised by
mesocondensates each of which contains a subextensive number of particles. A
detailed phase diagram, delineating the various phases, is derived.Comment: 15 pages, 4 figure, published versi
Flocking Regimes in a Simple Lattice Model
We study a one-dimensional lattice flocking model incorporating all three of
the flocking criteria proposed by Reynolds [Computer Graphics vol.21 4 (1987)]:
alignment, centring and separation. The model generalises that introduced by O.
J. O' Loan and M. R. Evans [J. Phys. A. vol. 32 L99 (1999)]. We motivate the
dynamical rules by microscopic sampling considerations. The model exhibits
various flocking regimes: the alternating flock, the homogeneous flock and
dipole structures. We investigate these regimes numerically and within a
continuum mean-field theory.Comment: 24 pages 7 figure
Phase Diagrams for Deformable Toroidal and Spherical Surfaces with Intrinsic Orientational Order
A theoretical study of toroidal membranes with various degrees of intrinsic
orientational order is presented at mean-field level. The study uses a simple
Ginzburg-Landau style free energy functional, which gives rise to a rich
variety of physics and reveals some unusual ordered states. The system is found
to exhibit many different phases with continuous and first order phase
transitions, and phenomena including spontaneous symmetry breaking, ground
states with nodes and the formation of vortex-antivortex quartets. Transitions
between toroidal phases with different configurations of the order parameter
and different aspect ratios are plotted as functions of the thermodynamic
parameters. Regions of the phase diagrams in which spherical vesicles form are
also shown.Comment: 40, revtex (with epsf), M/C.TH.94/2
Transforming from time to frequency without artefacts
I review a simple method, recently introduced to convert rheological
compliance measurements into frequency-dependent moduli. New experimental data
are presented, and the scientific implications of various data conversion
methods discussed
The Lee-Yang theory of equilibrium and nonequilibrium phase transitions
We present a pedagogical account of the Lee-Yang theory of equilibrium phase
transitions and review recent advances in applying this theory to
nonequilibrium systems. Through both general considerations and explicit
studies of specific models, we show that the Lee-Yang approach can be used to
locate and classify phase transitions in nonequilibrium steady states.Comment: 24 pages, 7 papers, invited paper for special issue of The Brazilian
Journal of Physic
Soft core fluid in a quenched matrix of soft core particles: A mobile mixture in a model gel
We present a density-functional study of a binary phase-separating mixture of
soft core particles immersed in a random matrix of quenched soft core particles
of larger size. This is a model for a binary polymer mixture immersed in a
crosslinked rigid polymer network. Using the replica `trick' for
quenched-annealed mixtures we derive an explicit density functional theory that
treats the quenched species on the level of its one-body density distribution.
The relation to a set of effective external potentials acting on the annealed
components is discussed. We relate matrix-induced condensation in bulk to the
behaviour of the mixture around a single large particle. The interfacial
properties of the binary mixture at a surface of the quenched matrix display a
rich interplay between capillary condensation inside the bulk matrix and
wetting phenomena at the matrix surface.Comment: 20 pages, 5 figures. Accepted for Phys. Rev.
- …
