33,404 research outputs found

    Condensation Transitions in a One-Dimensional Zero-Range Process with a Single Defect Site

    Get PDF
    Condensation occurs in nonequilibrium steady states when a finite fraction of particles in the system occupies a single lattice site. We study condensation transitions in a one-dimensional zero-range process with a single defect site. The system is analysed in the grand canonical and canonical ensembles and the two are contrasted. Two distinct condensation mechanisms are found in the grand canonical ensemble. Discrepancies between the infinite and large but finite systems' particle current versus particle density diagrams are investigated and an explanation for how the finite current goes above a maximum value predicted for infinite systems is found in the canonical ensemble.Comment: 18 pages, 4 figures, revtex

    Nonlocal First-Order Hamilton-Jacobi Equations Modelling Dislocations Dynamics

    Get PDF
    We study nonlocal first-order equations arising in the theory of dislocations. We prove the existence and uniqueness of the solutions of these equations in the case of positive and negative velocities, under suitable regularity assumptions on the initial data and the velocity. These results are based on new L1L^1-type estimates on the viscosity solutions of first-order Hamilton-Jacobi Equations appearing in the so-called ``level-sets approach''. Our work is inspired by and simplifies a recent work of Alvarez, Cardaliaguet and Monneau

    Factorised Steady States in Mass Transport Models

    Get PDF
    We study a class of mass transport models where mass is transported in a preferred direction around a one-dimensional periodic lattice and is globally conserved. The model encompasses both discrete and continuous masses and parallel and random sequential dynamics and includes models such as the Zero-range process and Asymmetric random average process as special cases. We derive a necessary and sufficient condition for the steady state to factorise, which takes a rather simple form.Comment: 6 page

    Freezing of He-4 and its liquid-solid interface from Density Functional Theory

    Get PDF
    We show that, at high densities, fully variational solutions of solid-like type can be obtained from a density functional formalism originally designed for liquid 4He. Motivated by this finding, we propose an extension of the method that accurately describes the solid phase and the freezing transition of liquid 4He at zero temperature. The density profile of the interface between liquid and the (0001) surface of the 4He crystal is also investigated, and its surface energy evaluated. The interfacial tension is found to be in semiquantitative agreement with experiments and with other microscopic calculations. This opens the possibility to use unbiased DF methods to study highly non-homogeneous systems, like 4He interacting with strongly attractive impurities/substrates, or the nucleation of the solid phase in the metastable liquid.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Criterion for phase separation in one-dimensional driven systems

    Get PDF
    A general criterion for the existence of phase separation in driven one-dimensional systems is proposed. It is suggested that phase separation is related to the size dependence of the steady-state currents of domains in the system. A quantitative criterion for the existence of phase separation is conjectured using a correspondence made between driven diffusive models and zero-range processes. Several driven diffusive models are discussed in light of the conjecture

    Phase Transition in Two Species Zero-Range Process

    Full text link
    We study a zero-range process with two species of interacting particles. We show that the steady state assumes a simple factorised form, provided the dynamics satisfy certain conditions, which we derive. The steady state exhibits a new mechanism of condensation transition wherein one species induces the condensation of the other. We study this mechanism for a specific choice of dynamics.Comment: 8 pages, 3 figure

    Real forms of the complex twisted N=2 supersymmetric Toda chain hierarchy in real N=1 and twisted N=2 superspaces

    Full text link
    Three nonequivalent real forms of the complex twisted N=2 supersymmetric Toda chain hierarchy (solv-int/9907021) in real N=1 superspace are presented. It is demonstrated that they possess a global twisted N=2 supersymmetry. We discuss a new superfield basis in which the supersymmetry transformations are local. Furthermore, a representation of this hierarchy is given in terms of two twisted chiral N=2 superfields. The relations to the s-Toda hierarchy by H. Aratyn, E. Nissimov and S. Pacheva (solv-int/9801021) as well as to the modified and derivative NLS hierarchies are established

    The VLT-FLAMES Tarantula Survey

    Full text link
    We present a number of notable results from the VLT-FLAMES Tarantula Survey (VFTS), an ESO Large Program during which we obtained multi-epoch medium-resolution optical spectroscopy of a very large sample of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). This unprecedented data-set has enabled us to address some key questions regarding atmospheres and winds, as well as the evolution of (very) massive stars. Here we focus on O-type runaways, the width of the main sequence, and the mass-loss rates for (very) massive stars. We also provide indications for the presence of a top-heavy initial mass function (IMF) in 30 Dor.Comment: 7 Figures, 8 pages. Invited talk: IAUS 329: "The Lives and Death-Throes of Massive Stars

    Asymmetric exclusion model with several kinds of impurities

    Full text link
    We formulate a new integrable asymmetric exclusion process with N−1=0,1,2,...N-1=0,1,2,... kinds of impurities and with hierarchically ordered dynamics. The model we proposed displays the full spectrum of the simple asymmetric exclusion model plus new levels. The first excited state belongs to these new levels and displays unusual scaling exponents. We conjecture that, while the simple asymmetric exclusion process without impurities belongs to the KPZ universality class with dynamical exponent 3/2, our model has a scaling exponent 3/2+N−13/2+N-1. In order to check the conjecture, we solve numerically the Bethe equation with N=3 and N=4 for the totally asymmetric diffusion and found the dynamical exponents 7/2 and 9/2 in these cases.Comment: to appear in JSTA

    Membrane geometry with auxiliary variables and quadratic constraints

    Get PDF
    Consider a surface described by a Hamiltonian which depends only on the metric and extrinsic curvature induced on the surface. The metric and the curvature, along with the basis vectors which connect them to the embedding functions defining the surface, are introduced as auxiliary variables by adding appropriate constraints, all of them quadratic. The response of the Hamiltonian to a deformation in each of the variables is examined and the relationship between the multipliers implementing the constraints and the conserved stress tensor of the theory established.Comment: 8 page
    • 

    corecore