3,297 research outputs found

    Economic evaluation of short treatment for multidrugresistant tuberculosis, Ethiopia and South Africa : the STREAM trial

    Get PDF
    OBJECTIVE STREAM was a phase-III non-inferiority randomised controlled trial (RCT) to evaluate a shortened regimen for multi-drug resistant tuberculosis (MDR-TB), and included the first-ever within-trial economic evaluation of such regimens, reported here. METHODS We compared the costs of ‘Long’ (20-22 months) and ‘Short’ (9-11 months) regimens in Ethiopia and South Africa. Cost data were collected from trial participants, and health system costs estimated using ‘bottom-up’ and ‘top-down’ costing approaches. A cost-effectiveness analysis was conducted with the trial primary outcome as the measure of effectiveness, including a probabilistic sensitivity analysis (PSA) to illustrate decision uncertainty. FINDINGS The Short-regimen reduced healthcare costs per case by 21% in South Africa (US8,341LongvsUS8,341 Long vs US6,619 Short) and 25% in Ethiopia (US6,097LongvsUS6,097 Long vs US4,552 Short). The largest component of this saving was medication in South Africa (67%) and social support in Ethiopia (35%). In Ethiopia, participants on the Short-regimen reported reductions in dietary supplementation expenditure (US225percase(95225 per case (95%CI 133-297)), and greater productivity (667 additional hours worked, 95%CI 193– 1127). Patient cost savings also arose from fewer visits to health facilities (Ethiopia US13 (95%CI 11-14), South Africa US64(9564 (95%CI 50-77) per case). The probability of cost-effectiveness was >95% when favourable outcomes were valued at <US19,000 (Ethiopia) or <US$14,500 (South Africa). CONCLUSION The Short-regimen provided substantial health system cost savings and reduced financial burden on participants. Shorter regimens are likely to be cost-effective in most settings, and an effective strategy to support the WHO goal of eliminating catastrophic costs in T

    The Effect of Cumulus Cloud Field Anisotropy on Domain-Averaged Solar Fluxes and Atmospheric Heating Rates

    Get PDF
    Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam

    Abundances on the Main Sequence of Omega Centauri

    Full text link
    Abundance ratios of carbon, nitrogen and strontium relative to iron, calculated using spectrum synthesis techniques, are given for a sample of main sequence and turnoff stars that belong to the globular cluster omega Centauri. The variations of carbon, nitrogen and/or strontium show several different abundance patterns as a function of [Fe/H]. The source of the enhancements/depletions in carbon, nitrogen and/or strontium may be enrichment from asymptotic giant branch stars of low (1--3 solar masses) and intermediate (3--8 solar masses) mass. Massive rotating stars which produce excess nitrogen without carbon and oxygen overabundances may also play a role. These abundances enable different contributors to be considered and incorporated into the evolutionary picture of omega Cen.Comment: 43 Pages, 13 Figures. Accepted for publication in Ap

    Nkx2-5+Islet1+ Mesenchymal Precursors Generate Distinct Spleen Stromal Cell Subsets and Participate in Restoring Stromal Network Integrity

    Get PDF
    SummarySecondary lymphoid organ stromal cells comprise different subsets whose origins remain unknown. Herein, we exploit a genetic lineage-tracing approach to show that splenic fibroblastic reticular cells (FRCs), follicular dendritic cells (FDCs), marginal reticular cells (MRCs), and mural cells, but not endothelial cells, originate from embryonic mesenchymal progenitors of the Nkx2-5+Islet1+ lineage. This lineage include embryonic mesenchymal cells with lymphoid tissue organizer (LTo) activity capable also of supporting ectopic lymphoid-like structures and a subset of resident spleen stromal cells that proliferate and regenerate the splenic stromal microenvironment following resolution of a viral infection. These findings identify progenitor cells that generate stromal diversity in spleen development and repair and suggest the existence of multipotent stromal progenitors in the adult spleen with regenerative capacity

    The Acinetobacter baumannii two-component system aders regulates genes required for multidrug efflux, biofilm formation, and virulence in a strain-specific manner

    Get PDF
    The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery. IMPORTANCE Acinetobacter baumannii is a nosocomial pathogen and is an increasing problem in hospitals worldwide. This organism is often multidrug resistant, can persist in the environment, and forms a biofilm on environmental surfaces and wounds. Overproduction of efflux pumps can allow specific toxic compounds to be pumped out of the cell and can lead to multidrug resistance. This study demonstrates the role of the A. baumannii efflux pump AdeB, and its regulator AdeRS, in multidrug resistance, epithelial cell killing, and biofilm formation. Deletion of the genes encoding these systems led to increased susceptibility to antibiotics, decreased biofilm formation on biotic and abiotic surfaces, and decreased virulence. Our data suggest that inhibition of AdeB could prevent biofilm formation or colonization in patients by A. baumannii and provides a good target for drug discovery

    A Geographically-Restricted but Prevalent Mycobacterium tuberculosis Strain Identified in the West Midlands Region of the UK between 1995 and 2008

    Get PDF
    Background: We describe the identification of, and risk factors for, the single most prevalent Mycobacterium tuberculosis strain in the West Midlands region of the UK.Methodology/Principal Findings: Prospective 15-locus MIRU-VNTR genotyping of all M. tuberculosis isolates in the West Midlands between 2004 and 2008 was undertaken. Two retrospective epidemiological investigations were also undertaken using univariable and multivariable logistic regression analysis. The first study of all TB patients in the West Midlands between 2004 and 2008 identified a single prevalent strain in each of the study years (total 155/3,056 (5%) isolates). This prevalent MIRU-VNTR profile (32333 2432515314 434443183) remained clustered after typing with an additional 9-loci MIRU-VNTR and spoligotyping. The majority of these patients (122/155, 79%) resided in three major cities located within a 40 km radius. From the apparent geographical restriction, we have named this the "Mercian" strain. A multivariate analysis of all TB patients in the West Midlands identified that infection with a Mercian strain was significantly associated with being UK-born (OR = 9.03, 95% CI = 4.56-17.87, p 65 years old (OR = 0.25, 95% CI = 0.09-0.67, p < 0.01). A second more detailed investigation analyzed a cohort of 82 patients resident in Wolverhampton between 2003 and 2006. A significant association with being born in the UK remained after a multivariate analysis (OR = 9.68, 95% CI = 2.00-46.78, p < 0.01) and excess alcohol intake and cannabis use (OR = 6.26, 95% CI = 1.45-27.02, p = .01) were observed as social risk factors for infection.Conclusions/Significance: The continued consistent presence of the Mercian strain suggests ongoing community transmission. Whilst significant associations have been found, there may be other common risk factors yet to be identified. Future investigations should focus on targeting the relevant risk groups and elucidating the biological factors that mediate continued transmission of this strain

    Unveiling extracellular matrix assembly: Insights and approaches through bioorthogonal chemistry

    Get PDF
    Visualizing cells, tissues, and their components specifically without interference with cellular functions, such as biochemical reactions, and cellular viability remains important for biomedical researchers worldwide. For an improved understanding of disease progression, tissue formation during development, and tissue regeneration, labeling extracellular matrix (ECM) components secreted by cells persists is required. Bioorthogonal chemistry approaches offer solutions to visualizing and labeling ECM constituents without interfering with other chemical or biological events. Although biorthogonal chemistry has been studied extensively for several applications, this review summarizes the recent advancements in using biorthogonal chemistry specifically for metabolic labeling and visualization of ECM proteins and glycosaminoglycans that are secreted by cells and living tissues. Challenges, limitations, and future directions surrounding biorthogonal chemistry involved in the labeling of ECM components are discussed. Finally, potential solutions for improvements to biorthogonal chemical approaches are suggested. This would provide theoretical guidance for labeling and visualization of de novo proteins and polysaccharides present in ECM that are cell-secreted for example during tissue remodeling or in vitro differentiation of stem cells

    Human PrimPol is a highly error-prone polymerase regulated by single-stranded DNA binding proteins

    Get PDF
    PrimPol is a recently identified polymerase involved in eukaryotic DNA damage tolerance, employed in both re-priming and translesion synthesis mechanisms to bypass nuclear and mitochondrial DNA lesions. In this report, we investigate how the enzymatic activities of human PrimPol are regulated. We show that, unlike other TLS polymerases, PrimPol is not stimulated by PCNA and does not interact with it in vivo. We identify that PrimPol interacts with both of the major single-strand binding proteins, RPA and mtSSB in vivo. Using NMR spectroscopy, we characterize the domains responsible for the PrimPol-RPA interaction, revealing that PrimPol binds directly to the N-terminal domain of RPA70. In contrast to the established role of SSBs in stimulating replicative polymerases, we find that SSBs significantly limit the primase and polymerase activities of PrimPol. To identify the requirement for this regulation, we employed two forward mutation assays to characterize PrimPol's replication fidelity. We find that PrimPol is a mutagenic polymerase, with a unique error specificity that is highly biased towards insertion-deletion errors. Given the error-prone disposition of PrimPol, we propose a mechanism whereby SSBs greatly restrict the contribution of this enzyme to DNA replication at stalled forks, thus reducing the mutagenic potential of PrimPol during genome replication
    corecore