2,271 research outputs found
Morphological variation of the spermatheca in the garden snail Cantareus aspersus - article in French with an abridged English version
articleSpermathecal morphology is known to play an important role in postcopulatory sexual selection of many invertebrates. In helicid land snails, the spermatheca is subdivided into tubules, whose number is sometimes subject to a strong inter-individual variation. Significance of this variation for postcopulatory sexual selection is unknown, but it might be related to cryptic female choice. In the present work, we have investigated the fine multi-tubular structure of the sperm storage organ in Cantareus aspersus. We found between 3 and 13 tubules per individual in a single population, which represents a degree of variation rarely observed in helicid land snails
European wildcat populations are subdivided into five main biogeographic groups: consequences of Pleistocene climate changes or recent anthropogenic fragmentation?
Extant populations of the European wildcat are fragmented across the continent, the likely consequence of recent extirpations due to habitat loss and over-hunting. However, their underlying phylogeographic history has never been reconstructed. For testing the hypothesis that the European wildcat survived the Ice Age fragmented in Mediterranean refuges, we assayed the genetic variation at 31 microsatellites in 668 presumptive European wildcats sampled in 15 European countries. Moreover, to evaluate the extent of subspecies/population divergence and identify eventual wild × domestic cat hybrids, we genotyped 26 African wildcats from Sardinia and North Africa and 294 random-bred domestic cats. Results of multivariate analyses and Bayesian clustering confirmed that the European wild and the domestic cats (plus the African wildcats) belong to two well-differentiated clusters (average Ф ST = 0.159, r st = 0.392, P > 0.001; Analysis of molecular variance [AMOVA]). We identified from c. 5% to 10% cryptic hybrids in southern and central European populations. In contrast, wild-living cats in Hungary and Scotland showed deep signatures of genetic admixture and introgression with domestic cats. The European wildcats are subdivided into five main genetic clusters (average Ф ST = 0.103, r st = 0.143, P > 0.001; AMOVA) corresponding to five biogeographic groups, respectively, distributed in the Iberian Peninsula, central Europe, central Germany, Italian Peninsula and the island of Sicily, and in north-eastern Italy and northern Balkan regions (Dinaric Alps). Approximate Bayesian Computation simulations supported late Pleistocene-early Holocene population splittings (from c. 60 k to 10 k years ago), contemporary to the last Ice Age climatic changes. These results provide evidences for wildcat Mediterranean refuges in southwestern Europe, but the evolution history of eastern wildcat populations remains to be clarified. Historical genetic subdivisions suggest conservation strategies aimed at enhancing gene flow through the restoration of ecological corridors within each biogeographic units. Concomitantly, the risk of hybridization with free-ranging domestic cats along corridor edges should be carefully monitored
An integrated 4249 marker FISH/RH map of the canine genome
BACKGROUND: The 156 breeds of dog recognized by the American Kennel Club offer a unique opportunity to map genes important in genetic variation. Each breed features a defining constellation of morphological and behavioral traits, often generated by deliberate crossing of closely related individuals, leading to a high rate of genetic disease in many breeds. Understanding the genetic basis of both phenotypic variation and disease susceptibility in the dog provides new ways in which to dissect the genetics of human health and biology. RESULTS: To facilitate both genetic mapping and cloning efforts, we have constructed an integrated canine genome map that is both dense and accurate. The resulting resource encompasses 4249 markers, and was constructed using the RHDF5000-2 whole genome radiation hybrid panel. The radiation hybrid (RH) map features a density of one marker every 900 Kb and contains 1760 bacterial artificial chromosome clones (BACs) localized to 1423 unique positions, 851 of which have also been mapped by fluorescence in situ hybridization (FISH). The two data sets show excellent concordance. Excluding the Y chromosome, the map features an RH/FISH mapped BAC every 3.5 Mb and an RH mapped BAC-end, on average, every 2 Mb. For 2233 markers, the orthologous human genes have been established, allowing the identification of 79 conserved segments (CS) between the dog and human genomes, dramatically extending the length of most previously described CS. CONCLUSIONS: These results provide a necessary resource for the canine genome mapping community to undertake positional cloning experiments and provide new insights into the comparative canine-human genome maps
'Good-genes' and 'compatible-genes' effects in an Alpine whitefish and the information content of breeding tubercles over the course of the spawning season.
Some models of sexual selection predict that individuals vary in their genetic quality and reveal some of this variation in their secondary sexual characteristics. Alpine whitefish (Coregonus sp.) develop breeding tubercles shortly before their spawning season. These tubercles are epidermal structures that are distributed regularly along the body sides of both males and females. There is still much unexplained variation in the size of breeding tubercles within both sexes and with much overlap between the sexes. It has been suggested that breeding tubercles function to maintain body contact between the mating partners during spawning, act as weapons for defence of spawning territories, or are sexual signals that reveal aspects of genetic quality. We took two samples of whitefish from their spawning place, one at the beginning and one around the peak of spawning season. We found that females have on average smaller breeding tubercles than males, and that tubercle size partly reveals the stage of gonad maturation. Two independent full-factorial breeding experiments revealed that embryo mortality was significantly influenced by male and female effects. This finding demonstrates that the males differed in their genetic quality (because offspring get nothing but genes from their fathers). Tubercle size was negatively linked to some aspects of embryo mortality in the first breeding experiment but not significantly so in the second. This lack of consistency adds to inconsistent results that were reported before and suggests that (i) some aspects of genetic quality are not revealed in breeding tubercles while others are, or (ii) individuals vary in their signaling strategies and the information content of breeding tubercles is not always reliable. Moreover, the fact that female whitefish have breeding tubercles of significant size while males seem to have few reasons to be choosy suggests that the tubercles might also serve some functions that are not linked to sexual signaling
Preliminary 3-D geological models of Los Humeros and Acoculco geothermal fields (Mexico) – H2020 GEMex Project
As part of the GEMex Project, an on-going European-Mexican effort to develop
geothermal energy from non-conventional sources, preliminary geological
models have been constructed for two sites located in the easternmost region
of the Trans-Mexican Volcanic Belt. The first site, Los Humeros, which has
produced geothermal electricity for decades, is investigated for its probable
superhot geothermal resources. The second site, Acoculco, is a less known but
promising area where application of an Enhanced Geothermal System is being
studied. In order to have a coherent geological interpretation of both sites,
preliminary 3-D models were constructed in a collaborative manner by European
and Mexican partners. These models are based on data available at the start
of the project, including geological maps, cross-sections and well logs. The
data were mainly provided by the Comisión Federal de Electricidad (CFE),
and the Mexican Centre for Innovation in Geothermal Energy (CeMIE-Geo
consortium). A regional model was developed for each site and an additional
local model was constructed for Los Humeros. The preliminary geological
models serve as a framework for GEMex work on heat-transport and fluid-flow
simulations; they will be updated and refined during the project, using new
data and interpretations from ongoing and future field work on geology,
geophysics, and geochemistry.</p
Molecular techniques reveal cryptic life history and demographic processes of a critically endangered marine turtle
The concept of ‘effective population size’ (Ne), which quantifies how quickly a population will lose genetic variability, is one of the most important contributions of theoretical evolutionary biology to practical conservation management. Ne is often much lower than actual population size: how much so depends on key life history and demographic parameters, such as mating systems and population connectivity, that often remain unknown for species of conservation concern. Molecular techniques allow the indirect study of these parameters, as well as the estimation of current and historical Ne. Here, we use genotyping to assess the genetic health of an important population of the critically endangered hawksbill turtle (Eretmochelys imbricata), a slow-to-mature, difficult-to-observe species with a long history of severe overhunting. Our results were surprisingly positive: we found that the study population, located in the Republic of Seychelles, Indian Ocean, has a relatively large Ne, estimated to exceed 1000, and showed no evidence of a recent reduction in Ne (i.e. no genetic bottleneck). Furthermore, molecular inferences suggest the species' mating system is conducive to maintaining a large Ne, with a relatively large and widely distributed male population promoting considerable gene flow amongst nesting sites across the Seychelles area. This may also be reinforced by the movement of females between nesting sites. Our study underlines how molecular techniques can help to inform conservation biology. In this case our results suggest that this important hawksbill population is starting from a relatively strong position as it faces new challenges, such as global climate change
Recommended from our members
Genetic analysis of a major international collection of cultivated apple varieties reveals previously unknown historic heteroploid and inbred relationships
Domesticated apple (Malus x domestica Borkh.) is a major global crop and the genetic diversity held within the pool of cultivated varieties is important for the development of future cultivars. The aim of this study was to investigate the diversity held within the domesticated form, through the analysis of a major international germplasm collection of cultivated varieties, the UK National Fruit Collection, consisting of over 2,000 selections of named cultivars and seedling varieties. We utilised Diversity Array Technology (DArT) markers to assess the genetic diversity within the collection. Clustering attempts, using the software STRUCTURE revealed that the accessions formed a complex and historically admixed group for which clear clustering was challenging. Comparison of accessions using the Jaccard similarity coefficient allowed us to identify clonal and duplicate material as well as revealing pairs and groups that appeared more closely related than a standard parent-offspring or full-sibling relations. From further investigation, we were able to propose a number of new pedigrees, which revealed that some historically important cultivars were more closely related than previously documented and that some of them were partially inbred. We were also able to elucidate a number of parent-offspring relationships that had resulted in a number of important polyploid cultivars. This included reuniting polyploid cultivars that in some cases dated as far back as the 18th century, with diploid parents that potentially date back as far as the 13th century
Preliminary genetic evidence of two different populations of Opisthorchis viverrini in Lao PDR
Opisthorchis viverrini is a major public health concern in Southeast Asia. Various reports have suggested that this parasite may represent a species complex, with genetic structure in the region perhaps being dictated by geographical factors and different species of intermediate hosts. We used four microsatellite loci to analyze O. viverrini adult worms originating from six species of cyprinid fish in Thailand and Lao PDR. Two distinct O. viverrini populations were observed. In Ban Phai, Thailand, only one subgroup occurred, hosted by two different fish species. Both subgroups occurred in fish from That Luang, Lao PDR, but were represented to very different degrees among the fish hosts there. Our data suggest that, although geographical separation is more important than fish host specificity in influencing genetic structure, it is possible that two species of Opisthorchis, with little interbreeding, are present near Vientiane in Lao PDR
Lineage Divergence and Historical Gene Flow in the Chinese Horseshoe Bat (Rhinolophus sinicus)
PMCID: PMC3581519This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
On Identifying the Optimal Number of Population Clusters via the Deviance Information Criterion
Inferring population structure using Bayesian clustering programs often requires a priori specification of the number of subpopulations, , from which the sample has been drawn. Here, we explore the utility of a common Bayesian model selection criterion, the Deviance Information Criterion (DIC), for estimating . We evaluate the accuracy of DIC, as well as other popular approaches, on datasets generated by coalescent simulations under various demographic scenarios. We find that DIC outperforms competing methods in many genetic contexts, validating its application in assessing population structure
- …