17 research outputs found

    Quinoa Phenotyping Methodologies: An International Consensus

    Get PDF
    Quinoa is a crop originating in the Andes but grown more widely and with the genetic potential for significant further expansion. Due to the phenotypic plasticity of quinoa, varieties need to be assessed across years and multiple locations. To improve comparability among field trials across the globe and to facilitate collaborations, components of the trials need to be kept consistent, including the type and methods of data collected. Here, an internationally open-access framework for phenotyping a wide range of quinoa features is proposed to facilitate the systematic agronomic, physiological and genetic characterization of quinoa for crop adaptation and improvement. Mature plant phenotyping is a central aspect of this paper, including detailed descriptions and the provision of phenotyping cards to facilitate consistency in data collection. High-throughput methods for multi-temporal phenotyping based on remote sensing technologies are described. Tools for higher-throughput post-harvest phenotyping of seeds are presented. A guideline for approaching quinoa field trials including the collection of environmental data and designing layouts with statistical robustness is suggested. To move towards developing resources for quinoa in line with major cereal crops, a database was created. The Quinoa Germinate Platform will serve as a central repository of data for quinoa researchers globally.EEA FamaillåFil: Stanschewski, Clara S. King Abdullah University of Science and Technology. Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division; Arabia SauditaFil: Rey, Elodie. King Abdullah University of Science and Technology. Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division; Arabia SauditaFil: Fiene, Gabriele. King Abdullah University of Science and Technology. Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division; Arabia SauditaFil: Craine, Evan B. Washington State University. Department of Crop and Soil Sciences; Estados UnidosFil: Wellman, Gordon. King Abdullah University of Science and Technology. Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division; Arabia SauditaFil: Melino, Vanessa J. King Abdullah University of Science and Technology. Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division; Arabia SauditaFil: Patiranage, Dilan S.R. King Abdullah University of Science and Technology. Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division; Arabia SauditaFil: Patiranage, Dilan S.R. Christian-Albrechts-University of Kiel. Plant Breeding Institute; AlemaniaFil: Johansen, Kasper. King Abdullah University of Science and Technology. Water Desalination and Reuse Center; Arabia SauditaFil: Schmöckel, Sandra M. University of Hohenheim. Institute of Crop Science. Department Physiology of Yield Stability; AlemaniaFil: Erazzu, Luis Ernesto. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Famaillå; Argentina.Fil: Tester, Mark. King Abdullah University of Science and Technology. Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division; Arabia Saudit

    Quinoa phenotyping methodologies: An international consensus

    Get PDF
    Quinoa is a crop originating in the Andes but grown more widely and with the genetic potential for significant further expansion. Due to the phenotypic plasticity of quinoa, varieties need to be assessed across years and multiple locations. To improve comparability among field trials across the globe and to facilitate collaborations, components of the trials need to be kept consistent, including the type and methods of data collected. Here, an internationally open-access framework for phenotyping a wide range of quinoa features is proposed to facilitate the systematic agronomic, physiological and genetic characterization of quinoa for crop adaptation and improvement. Mature plant phenotyping is a central aspect of this paper, including detailed descriptions and the provision of phenotyping cards to facilitate consistency in data collection. High-throughput methods for multi-temporal phenotyping based on remote sensing technologies are described. Tools for higher-throughput post-harvest phenotyping of seeds are presented. A guideline for approaching quinoa field trials including the collection of environmental data and designing layouts with statistical robustness is suggested. To move towards developing resources for quinoa in line with major cereal crops, a database was created. The Quinoa Germinate Platform will serve as a central repository of data for quinoa researchers globally.Fil: Stanschewski, Clara S.. King Abdullah University of Science and Technology; Arabia SauditaFil: Rey, Elodie. King Abdullah University of Science and Technology; Arabia SauditaFil: Fiene, Gabriele. King Abdullah University of Science and Technology; Arabia SauditaFil: Craine, Evan B.. Washington State University; Estados UnidosFil: Wellman, Gordon. King Abdullah University of Science and Technology; Arabia SauditaFil: Melino, Vanessa J.. King Abdullah University of Science and Technology; Arabia SauditaFil: Patiranage, Dilan S. R.. King Abdullah University of Science and Technology; Arabia SauditaFil: Johansen, Kasper. King Abdullah University of Science and Technology; Arabia SauditaFil: Schmöckel, Sandra M.. King Abdullah University of Science and Technology; Arabia SauditaFil: Bertero, Hector Daniel. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cåtedra de Producción Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Oakey, Helena. University of Adelaide; AustraliaFil: Colque Little, Carla. Universidad de Copenhagen; DinamarcaFil: Afzal, Irfan. University of Agriculture; PakistånFil: Raubach, Sebastian. The James Hutton Institute; Reino UnidoFil: Miller, Nathan. University of Wisconsin; Estados UnidosFil: Streich, Jared. Oak Ridge National Laboratory; Estados UnidosFil: Amby, Daniel Buchvaldt. Universidad de Copenhagen; DinamarcaFil: Emrani, Nazgol. Christian-albrechts-universitÀt Zu Kiel; AlemaniaFil: Warmington, Mark. Agriculture And Food; AustraliaFil: Mousa, Magdi A. A.. Assiut University; Arabia Saudita. King Abdullah University of Science and Technology; Arabia SauditaFil: Wu, David. Shanxi Jiaqi Agri-Tech Co.; ChinaFil: Jacobson, Daniel. Oak Ridge National Laboratory; Estados UnidosFil: Andreasen, Christian. Universidad de Copenhagen; DinamarcaFil: Jung, Christian. Christian-albrechts-universitÀt Zu Kiel; AlemaniaFil: Murphy, Kevin. Washington State University; Estados UnidosFil: Bazile, Didier. Savoirs, Environnement, Sociétés; Francia. Universite Paul-valery Montpellier Iii; FranciaFil: Tester, Mark. King Abdullah University of Science and Technology; Arabia Saudit

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    From Ground to Glass: Evaluation of Unique Barley Varieties for Craft Malting, Craft Brewing, and Consumer Sensory

    No full text
    Differentiating agricultural products has been adopted as a strategy to improve farm profitability and thereby business sustainability. This study aimed to evaluate unique barley varieties for craft malting and brewing markets to enhance profitability for diversified grain growers in southwestern Washington. Advanced barley breeding lines from Washington State University (WSU) were compared to a control variety (CDC-Copeland) through field trials, experimental and commercial malting conditions, and consumer sensory evaluation. The beers differed only by the genotype-dependent malt. Malting conditions (experimental or commercial) and field replicate influenced five out of the eight malt quality traits measured, while genotype influenced seven out of eight of the traits. Consumers differentiated the beers through ranking, open description, and check all that apply during a central location test. Based on consumer liking, breeding lines 12WA_120.14 or 12WA_120.17 could replace CDC-Copeland in beers. A total of 83% of consumers responded that they would pay more for a beer if it would support local farmers. This value proposition represents an opportunity for consumer purchasing to support producers, who form the foundation of the craft malt and beer value chain and whose economic success will determine the sustainability of small farms in minor growing regions. We provide further evidence for the contributions of barley genotype to beer flavor, while tracing the impact of barley genotype from ground to glass

    From Ground to Glass: Evaluation of Unique Barley Varieties for Craft Malting, Craft Brewing, and Consumer Sensory

    No full text
    Differentiating agricultural products has been adopted as a strategy to improve farm profitability and thereby business sustainability. This study aimed to evaluate unique barley varieties for craft malting and brewing markets to enhance profitability for diversified grain growers in southwestern Washington. Advanced barley breeding lines from Washington State University (WSU) were compared to a control variety (CDC-Copeland) through field trials, experimental and commercial malting conditions, and consumer sensory evaluation. The beers differed only by the genotype-dependent malt. Malting conditions (experimental or commercial) and field replicate influenced five out of the eight malt quality traits measured, while genotype influenced seven out of eight of the traits. Consumers differentiated the beers through ranking, open description, and check all that apply during a central location test. Based on consumer liking, breeding lines 12WA_120.14 or 12WA_120.17 could replace CDC-Copeland in beers. A total of 83% of consumers responded that they would pay more for a beer if it would support local farmers. This value proposition represents an opportunity for consumer purchasing to support producers, who form the foundation of the craft malt and beer value chain and whose economic success will determine the sustainability of small farms in minor growing regions. We provide further evidence for the contributions of barley genotype to beer flavor, while tracing the impact of barley genotype from ground to glass

    Nutritional quality of Onobrychis viciifolia (Scop.) seeds: A potentially novel perennial pulse crop for human use

    No full text
    Abstract Onobrychis viciifolia (hereafter sainfoin) is an autotetraploid (2n = 4x = 28), allogamous insect‐pollinated perennial legume originating from the Caucasus that has historically been cultivated as a forage. As a perennial legume, sainfoin has the potential to improve the sustainability of agriculture and food systems in multiple ways. Sainfoin can provide continuous living cover and biological nitrogen fixation to enhance soil fertility and health. It can also provide ecosystem services as a resource for pollinators and wildlife in addition to nitrogen fixation. Building on this history of valuable uses, The Land Institute is developing sainfoin as a pulse crop for human use. With the goal of supporting human diets with a sustainable, perennial protein source and nutrient‐dense crop, this innovation requires a thorough understanding of the chemical composition of sainfoin seeds to ensure safety and potential nutritional quality. Using seeds from commercial sainfoin varieties developed for forage production, grown by commercial sainfoin seed growers in the western United States, this study evaluates seed composition as part of an ongoing investigation into sainfoin's potential as a novel pulse. We found crude protein content (38.78%) comparable with soybean and lupine, fat content (6.96%) comparable with lupine and chickpea, and starch (7.1%) and dietary fiber content (48.96%) comparable with lupine. Phytic acid content was higher than pulses (1790.89 mg). Ash (3.81%), iron (64.14 ppm), and zinc contents (61.63 ppm) were in the higher end of the range for pulses. This study indicates that sainfoin could become a novel, nutrient‐dense crop for human nutrition. Future studies are required to further characterize seed composition and safety and demonstrate how common legume processing techniques may influence nutritional quality

    Perennial Bakiℱ Bean Safety for Human Consumption: Evidence from an Analysis of Heavy Metals, Folate, Canavanine, Mycotoxins, Microorganisms and Pesticides

    No full text
    Global food production relies on annual grain crops. The reliability and productivity of these crops are threatened by adaptations to climate change and unsustainable rates of soil loss associated with their cultivation. Perennial grain crops, which do not require planting every year, have been proposed as a transformative solution to these challenges. Perennial grain crops typically rely on wild species as direct domesticates or as sources of perenniality in hybridization with annual grains. Onobrychis spp. (sainfoins) are a genus of perennial legumes domesticated as ancient forages. Bakiℱ bean is the tradename for pulses derived from sainfoins, with ongoing domestication underway to extend demonstrated benefits to sustainable agriculture. This study contributes to a growing body of evidence characterizing the nutritional quality of Bakiℱ bean. Through two studies, we investigated the safety of Bakiℱ bean for human consumption. We quantified heavy metals, folate, and canavanine for samples from commercial seed producers, and we quantified levels of mycotoxins, microorganisms, and pesticides in samples from a single year and seed producer, representing different varieties and production locations. The investigated analytes were not detectable or occurred at levels that do not pose a significant safety risk. Overall, this study supports the safety of Bakiℱ bean for human consumption as a novel pulse crop

    Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation

    No full text
    Plant functional traits can predict community assembly and ecosystem functioning and are thus widely used in global models of vegetation dynamics and land–climate feedbacks. Still, we lack a global understanding of how land and climate affect plant traits. A previous global analysis of six traits observed two main axes of variation: (1) size variation at the organ and plant level and (2) leaf economics balancing leaf persistence against plant growth potential. The orthogonality of these two axes suggests they are differently influenced by environmental drivers. We find that these axes persist in a global dataset of 17 traits across more than 20,000 species. We find a dominant joint effect of climate and soil on trait variation. Additional independent climate effects are also observed across most traits, whereas independent soil effects are almost exclusively observed for economics traits. Variation in size traits correlates well with a latitudinal gradient related to water or energy limitation. In contrast, variation in economics traits is better explained by interactions of climate with soil fertility. These findings have the potential to improve our understanding of biodiversity patterns and our predictions of climate change impacts on biogeochemical cycles
    corecore