125 research outputs found

    Using molecular imaging to assess the delivery and infection of protease activated virus in animal model of myocardial infarction

    Get PDF
    Cardiovascular diseases remain the greatest cause of death in the US and gene therapy has the potential to be an effective therapy. In this study, we demonstrated MMP-9 based protease-activatable virus (PAV) for selective infection of myocardial infarct (MI) that is associated with active MMP-9 expression. To test the specificity of PAV, we used expression of a far-red fluorescence protein (iRFP) delivered by the PAV together with a dual PET/NIRF imaging agent specific for active MMP-9 activity at the site of MI in a murine model. Calibrated fluorescence imaging employed a highly-sensitive intensified camera, laser diode excitation sources, and filtration schemes based upon the spectra of iRFP and the NIRF agent. One to two days after ligation of the left anterior descending artery, the PAV or WT AAV9 virus encoding for iRFP (5x1010 genomic particles) and radiolabeled MMP-9 imaging agent (3 nmol) were injected intravenously (i.v.). PET imaging showed MMP activity was associated with adverse tissue remodeling at the site of the MI. One week after, animals were again injected i.v. with the MMP-9 agent (3 nmol) and 18-24 h later, the animals were euthanized and the hearts were harvested, sliced, and imaged for congruent iRFP transgene expression and NIRF signals associated with MMP-9 tissue activity. The fluorescent margins of iRFP and NIRF contrasted tissues were quantified in terms Standard International units of mW/cm2/sr. The sensitivity, specificity, and accuracy of PAV and WT targeting to sites of MI was determined from these calibrated fluorescence measurements. The PAV demonstrated significantly higher delivery performance than that of the WT AAV9 virus

    Near-Infrared Fluorescence Optical Imaging and Tomography

    Get PDF
    The advent of recent advances in near-infrared laser diodes and fast electro-optic detection has spawned a new research field of diagnostic spectroscopy and imaging based on targeting and reporting exogenous fluorescent agents. This review seeks to concisely address the physics, instrumentation, advancements in tomography, and near-infrared fluorescent contrast agent development that promises selective and specific molecular targeting of diseased tissues. As an example of one area of the field, recent work focusing on pharmacokinetic analysis of fluorophores targeting the epidermal growth factor receptor (EGFR) is presented in a human breast cancer xenograft mouse model to demonstrate specificity of molecularly targeted contrast agents. Finally, a critical evaluation of the limitations and the opportunities for future translation of fluorescence-enhanced optical imaging of deep tissues is presented

    Near-Infrared Fluorescence Optical Imaging and Tomography

    Get PDF
    The advent of recent advances in near-infrared laser diodes and fast electro-optic detection has spawned a new research field of diagnostic spectroscopy and imaging based on targeting and reporting exogenous fluorescent agents. This review seeks to concisely address the physics, instrumentation, advancements in tomography, and near-infrared fluorescent contrast agent development that promises selective and specific molecular targeting of diseased tissues. As an example of one area of the field, recent work focusing on pharmacokinetic analysis of fluorophores targeting the epidermal growth factor receptor (EGFR) is presented in a human breast cancer xenograft mouse model to demonstrate specificity of molecularly targeted contrast agents. Finally, a critical evaluation of the limitations and the opportunities for future translation of fluorescence-enhanced optical imaging of deep tissues is presented

    Plasma Cytokines/Chemokines as Predictive Biomarkers For Lymphedema in Breast Cancer Patients

    Get PDF
    Breast cancer-related lymphedema (BCRL) occurs in ~ 40% of patients after axillary lymph node dissection (ALND), radiation therapy (RT), or chemotherapy. First-line palliative treatment utilizes compression garments and specialized massage. Reparative microsurgeries have emerged as a second-line treatment, yet both compression and surgical therapy are most effective at early stages of LE development. Identifying patients at the highest risk for BCRL would allow earlier, more effective treatment. Perometric arm volume measurements, near-infrared fluorescent lymphatic imaging (NIRF-LI) data, and blood were collected between 2016 and 2021 for 40 study subjects undergoing treatment for breast cancer. Plasma samples were evaluated using MILLIPLEX human cytokine/chemokine panels at pre-ALND and at 12 months post-RT. A Mann-Whitne

    Advancing the translation of optical imaging agents for clinical imaging

    Get PDF
    Despite the development of a large number of promising candidates, few contrast agents for established medical imaging modalities have successfully been translated over the past decade. The emergence of new imaging contrast agents that employ biomedical optics is further complicated by the relative infancy of the field and the lack of approved imaging devices compared to more established clinical modalities such as nuclear medicine. Herein, we propose a navigational approach (as opposed to a fixed “roadmap”) for translation of optical imaging agents that is (i) proposed through consensus by four academic research programs that are part of the cooperative U54 NCI Network for Translational Research, (ii) developed through early experiences for translating optical imaging agents in order to meet distinctly varied needs in cancer diagnostics, and (iii) adaptable to the rapidly changing environment of academic medicine. We describe the pathways by which optical imaging agents are synthesized, qualified, and validated for preclinical testing, and ultimately translated for “first-in-humans” studies using investigational optical imaging devices. By identifying and adopting consensus approaches for seemingly disparate optical imaging modalities and clinical indications, we seek to establish a systematic method for navigating the ever-changing “roadmap” to most efficiently arrive at the destination of clinical adoption and improved outcome and survivorship for cancer patients

    Single-Dose Intravenous Toxicity Study of IRDye 800CW in Sprague-Dawley Rats

    Get PDF
    Objective: Fluorophore-labeled contrast imaging agents are moving toward clinical use for a number of applications. The near-infrared dye IRDye 800CW is frequently used in its N-hydroxysuccinamide (NHS) ester form for labeling these agents. Following conjugation or breakdown of a labeled ligand, excess NHS ester is converted to the carboxylate form. To prepare for clinical use as a near-infrared fluorophore, a toxicity study was conducted on IRDye 800CW carboxylate. Methods: Male and female Sprague–Dawley rats were given a single intravenous or intradermal administration of IRDye 800CW carboxylate; Indocyanine Green was used as a comparative control. Animals were injected with varying doses of the test and control articles and observed for up to 14 days. Clinical chemistry, hematological, and pharmacokinetic analyses were performed on subgroups of animals. Organs were analyzed for content of the test article. Tissues were analyzed microscopically for pathological changes. Results: Based on hematologic, clinical chemistry, and histopathologic evaluation, single administration of IRDye 800CW carboxylate intravenously at dose levels of 1, 5, and 20 mg/kg or 20 mg/kg intradermally produced no pathological evidence of toxicity. Conclusion: A dose of 20 mg/kg was identified as the no observed adverse effect level following IV or ID routes of administration of IRDye 800CW

    Dual-Labeling Strategies for Nuclear and Fluorescence Molecular Imaging: A Review and Analysis

    Get PDF
    Molecular imaging is used for the detection of biochemical processes through the development of target-specific contrast agents. Separately, modalities such as nuclear and near-infrared fluorescence (NIRF) imaging have been shown to non-invasively monitor disease. More recently, merging of these modalities has shown promise owing to their comparable detection sensitivity and benefited from the development of dual-labeled imaging agents. Dual-labeled agents hold promise for whole-body and intraoperative imaging and could bridge the gap between surgical planning and image-guided resection with a single, molecularly targeted agent. In this review, we summarized the literature for dual-labeled antibodies and peptides that have been developed and have highlighted key considerations for incorporating NIRF dyes into nuclear labeling strategies. We also summarized our findings on several commercially available NIRF dyes and offer perspectives for developing a toolkit to select the optimal NIRF dye and radiometal combination for multimodality imaging

    Prediction of Breast Cancer-Related Lymphedema By Dermal Backflow Detected With Near-infrared Fluorescence Lymphatic Imaging

    Get PDF
    PURPOSE: Mild breast cancer-related lymphedema (BCRL) is clinically diagnosed as a 5%-10% increase in arm volume, typically measured no earlier than 3-6 months after locoregional treatment. Early BCRL treatment is associated with better outcomes, yet amid increasing evidence that lymphedema exists in a latent form, treatment is typically delayed until arm swelling is obvious. In this study, we investigated whether near-infrared fluorescence lymphatic imaging (NIRF-LI) surveillance could characterize early onset of peripheral lymphatic dysfunction as a predictor of BCRL. METHODS: In a prospective, longitudinal cohort/observational study (NCT02949726), subjects with locally advanced breast cancer who received axillary lymph node dissection and regional nodal radiotherapy (RT) were followed serially, between 2016 and 2021, before surgery, 4-8 weeks after surgery, and 6, 12, and 18 months after RT. Arm volume was measured by perometry, and lymphatic (dys) function was assessed by NIRF-LI. RESULTS: By 18 months after RT, 30 of 42 study subjects (71%) developed mild-moderate BCRL (i.e., ≥ 5% arm swelling relative to baseline), all manifested by dermal backflow of lymph into lymphatic capillaries or interstitial spaces. Dermal backflow had an 83% positive predictive value and 86% negative predictive value for BCRL, with a sensitivity of 97%, specificity of 50%, accuracy of 83%, positive likelihood ratio of 1.93, negative likelihood ratio of 0.07, and odds ratio of 29.00. Dermal backflow appeared on average 8.3 months, but up to 23 months, before the onset of mild BCRL. CONCLUSION: BCRL can be predicted by dermal backflow, which often appears months before arm swelling, enabling early treatment before the onset of edema and irreversible tissue changes
    corecore