24 research outputs found
Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity
The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)
Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors
Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe
Acute Ethanol Exposure Attenuates Pattern Recognition Receptor Activated Macrophage Functions
Both clinical and experimental data have linked acute ethanol exposure to increased susceptibility to infection as well as increased morbidity and mortality after injury. Macrophages play an integral role in the innate immune system and are important in priming the adaptive immune system. In this study, we investigated the effect of a single in vivo exposure of macrophages to physiologically relevant levels of ethanol (1.2 and 2.9 g/kg) followed by ex vivo stimulation with lipopolysaccharide (LPS) or bacteria. Our study confirms the work of others showing that a single administration of ethanol suppresses the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-12 in response to LPS. There was no effect of ethanol on LPS induction of cytokine production at 30 min after treatment. In contrast, at 3 h, both doses of ethanol exposure decreased ex vivo TNF-α production by splenic and alveolar macrophages. Interestingly, the higher dose of ethanol resulted in sustained suppression of LPS-induced TNF-α production at 3 and 6 h after ethanol administration, as well as decreased IL-6 and IL-12 production after 6 h, as compared to control (saline-treated groups). Alveolar macrophages behaved similarly at 3 h after ethanol treatment. LPS-stimulated production of TNF-α and IL-6 was reduced at 3 h after ethanol administration, when compared with the saline-treated animals. Alveolar macrophages stimulated for 3 h with bacteria also showed decreased TNF-α and IL-6 production after harvested from mice given 2.9 g/kg ethanol for 3 h. This time point and high dose of ethanol also resulted in decreased Pseudomonas aeruginosa phagocytosis by alveolar macrophages. Taken together, we conclude that the effects of physiological levels of ethanol are dose dependent, have effects that last after ethanol is cleared from the circulation, and can affect multiple macrophage functions
Prone equals prone? Impact of positioning techniques on respiratory function in anesthetized and paralyzed healthy children
OBJECTIVES: Although the prone position is effectively used to improve oxygenation, its impact on functional residual capacity is controversial. Different techniques of body positioning might be an important confounding factor. The aim of this study was to determine the impact of two different prone positioning techniques on functional residual capacity and ventilation distribution in anesthetized, preschool-aged children. DESIGN: Functional residual capacity and lung clearance index, a measure of ventilation homogeneity, were calculated using a sulfur-hexafluoride multibreath washout technique. After intubation, measurements were taken in the supine position and, in random order, in the flat prone position and the augmented prone position (gel pads supporting the pelvis and the upper thorax). SETTING: Pediatric anesthesia unit of university hospital. PATIENTS AND PARTICIPANTS: Thirty preschool children without cardiopulmonary disease undergoing elective surgery. MEASUREMENTS AND RESULTS: Mean (range) age was 48.5 (24-80) months, weight 17.2 (10.5-26.9) kg, functional residual capacity (mean +/- SD) 22.9+/- 6.2 ml.kg (-1) in the supine position and 23.3 +/- 5.6 ml.kg (-1) in the flat prone position, while lung clearance indices were 8.1 +/- 2.3 vs. 7.9 +/- 2.3, respectively. In contrast, functional residual capacity increased to 27.6 +/- 6.5 ml.kg (-1) (p> 0.001) in the augmented prone position while at the same time the lung clearance index decreased to 6.7 +/- 0.9 (p> 0.001). CONCLUSIONS: Functional residual capacity and ventilation distribution were similar in the supine and flat prone positions, while these parameters improved significantly in the augmented prone position, suggesting that the technique of prone positioning has major implications for pulmonary function