4 research outputs found
Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium.
An in vitro model of the human follicle associated epithelium (FAE) was characterized and the influence of nanoparticle properties on the transcellular transport across the in vitro model was investigated. The model was established by co-culturing Caco-2 and Raji cells, with Caco-2 cells alone as control. The conversion of Caco-2 cells to follicle associated epithelium (FAE) like cells was monitored by following the surface expression of beta1-integrins (immunofluorescence) and nanoparticle transport (flow cytometry). The influence of the nanoparticle concentration at the apical side, temperature, size and surface properties of nanoparticles on transport was evaluated, as well as the influence of transport conditions. The conversion of Caco-2 cells into FAE-like cells occurred. The transport was concentration, temperature and size-dependent. Aminated nanoparticles were more efficiently transported than carboxylated nanoparticles, suggesting a role of nanoparticle surface functional groups and hydrophobicity, possibly leading to a different pattern of protein adsorption at their surface. In conclusion, this in vitro model is a promising tool to study the role of M cells in transintestinal nanoparticle transport, as well as to evaluate new drug delivery systems
Body System Effects of a Multi-Modal Training Program Targeting Chronic, Motor Complete Thoracic Spinal Cord Injury
The safety and efficacy of pharmacological and cellular transplantation strategies are currently being evaluated in people with spinal cord injury (SCI). In studies of people with chronic SCIs, it is thought that functional recovery will be best achieved when drug or cell therapies are combined with rehabilitation protocols. However, any functional recovery attributed to the therapy may be confounded by the conditioned state of the body and by training-induced effects on neuroplasticity. For this reason, we sought to investigate the effects of a multi-modal training program on several body systems. The training program included body-weight–supported treadmill training for locomotion, circuit resistance training for upper body conditioning, functional electrical stimulation for activation of sublesional muscles, and wheelchair skills training for overall mobility. Eight participants with chronic, thoracic-level, motor-complete SCI completed the 12-week training program. After 12 weeks, upper extremity muscular strength improved significantly for all participants, and some participants experienced improvements in function, which may be explained by increased strength. Neurological function did not change. Changes in pain and spasticity were highly variable between participants. This is the first demonstration of the effect of this combination of four training modalities. However, balancing participant and study-site burden with capturing meaningful outcome measures is also an important consideration