8 research outputs found

    Anti-TNF-α antibody allows healing of joint damage in polyarthritic transgenic mice

    Get PDF
    Anti-tumor-necrosis-factor-α (TNF-α) monoclonal antibody was used to treat Tg197 transgenic mice, which constitutively produce human TNF-α (hTNF-α) and develop a progressive polyarthritic disease. Treatment of both young (7- or 8-week-old) and aged (27- or 28-week-old) mice commenced when at least two limbs showed signs of moderate to severe arthritis. The therapeutic efficacy of anti-TNF-α antibody was assessed using various pathological indicators of disease progression. The clinical severity of arthritis in Tg197 mice was significantly reduced after anti-TNF-α treatment in comparison with saline-treated mice and in comparison with baseline assessments in both young and aged mice. The treatment with anti-TNF-α prevented loss of body weight. Inflammatory pathways as reflected by elevated circulating hTNF-α and local expression of various proinflammatory mediators were all diminished by anti-TNF-α treatment, confirming a critical role of hTNF-α in this model of progressive polyarthritis. More importantly, the amelioration of the disease was associated with reversal of existing structural damage, including synovitis and periosteal bone erosions evident on histology. Repair of cartilage was age dependent: reversal of cartilage degradation after anti-TNF-α treatment was observed in young mice but not in aged mice

    Modulation of antigen-specific T cell response by a non-mitogenic anti-CD3 antibody

    No full text
    Suppression of T cell response is the key to enhance graft survival and control autoimmune diseases. A mitogenic anti-CD3 monoclonal antibody (mAb), OKT3, has been used for decades to control acute rejection in organ transplantation. Although effective, the clinical use was limited by its side effects, such as cytokine release mediated by T cell activation. A low mitogenic humanized OKT3 with reduced FcR-binding (hγOKT3 Ala–Ala) was generated and tested in several clinical studies. Although hγOKT3 Ala–Ala demonstrated maintained efficacy and better safety it still activated T cells. To investigate if a non-mitogenic anti-CD3 mAb can be equally effective in immune suppression, a chimeric non-FcR-binding anti-mouse CD3 mAb (anti-CD3 IgG2a Ala–Ala) was generated. Unlike the hγOKT3 Ala–Ala, the mouse IgG2a Ala–Ala anti-CD3 mAb did not induce T cell activation as measured by proliferation, cytokine production and apoptosis. Nevertheless, the IgG2a Ala–Ala anti-CD3 mAb was equally effective in the inhibition of antigen-specific CD4 + T cell activation in vitro to that of the mitogenic anti-CD3 mAb (Anti-CD3 IgG2a). In vivo, the IgG2a Ala–Ala anti-CD3 mAb only induced transient reduction of peripheral and spleen T cells and did not trigger detectable cytokine release. Nonetheless, this non-mitogenic anti-CD3 mAb significantly prolonged islet graft survival as effectively as the mitogenic anti-CD3 mAb in an allogenic islet transplantation model. These results demonstrated that a non-mitogenic anti-CD3 mAb could be used as an effective immune modulator. It may also indicate that a true non-mitogenic version of OKT3 could further improve its safety profile for clinical use
    corecore