2 research outputs found

    Compression Theorems for Periodic Tilings and Consequences

    Get PDF
    We consider a weighted square-and-domino tiling model obtained by assigning real number weights to the cells and boundaries of an n-board. An important special case apparently arises when these weights form periodic sequences. When the weights of an nm-tiling form sequences having period m, it is shown that such a tiling may be regarded as a meta-tiling of length n whose weights have period 1 except for the first cell (i.e., are constant). We term such a contraction of the period in going from the longer to the shorter tiling as period compression . It turns out that period compression allows one to provide combinatorial interpretations for certain identities involving continued fractions as well as for several identities involving Fibonacci and Lucas numbers (and their generalizations)

    The 99th Fibonacci Identity

    Get PDF
    We provide elementary combinatorial proofs of several Fibonacci and Lucas number identities left open in the book Proofs That Really Count [1], and generalize these to Gibonacci sequences Gn that satisfy the Fibonacci recurrence, but with arbitrary real initial conditions. We offer several new identities as well. [1] A. T. Benjamin and J. J. Quinn, Proofs That Really Count: The Art of Combinatorial Proof, The Dolciani Mathematical Expositions, 27, Mathematical Association of America, Washington, DC, 200
    corecore