7,659 research outputs found
Hybrid membrane distillation reverse electrodialysis configuration for water and energy recovery from human urine: an opportunity for off-grid decentralised sanitation
The integration of membrane distillation with reverse electrodialysis has been investigated as a sustainable sanitation solution to provide clean water and electrical power from urine and waste heat. Reverse electrodialysis was integrated to provide the partial remixing of the concentrate (urine) and diluate (permeate) produced from the membrane distillation of urine. Broadly comparable power densities to those of a model salt solution (sodium chloride) were determined during evaluation of the individual and combined contribution of the various monovalent and multivalent inorganic and organic salt constituents in urine. Power densities were improved through raising feed-side temperature and increasing concentration in the concentrate, without observation of limiting behaviour imposed by non-ideal salt and water transport. A further unique contribution of this application is the limited volume of salt concentrate available, which demanded brine recycling to maximise energy recovery analogous to a battery, operating in a ‘state of charge’. During recycle, around 47% of the Gibbs free energy was recoverable with up to 80% of the energy extractable before the concentration difference between the two solutions was halfway towards equilibrium which implies that energy recovery can be optimised with limited effect on permeate quality. This study has provided the first successful demonstration of an integrated MD-RED system for energy recovery from a limited resource, and evidences that the recovered power is sufficient to operate a range of low current fluid pumping technologies that could help deliver off-grid sanitation and clean water recovery at single household scale
Operational experience, improvements, and performance of the CDF Run II silicon vertex detector
The Collider Detector at Fermilab (CDF) pursues a broad physics program at
Fermilab's Tevatron collider. Between Run II commissioning in early 2001 and
the end of operations in September 2011, the Tevatron delivered 12 fb-1 of
integrated luminosity of p-pbar collisions at sqrt(s)=1.96 TeV. Many physics
analyses undertaken by CDF require heavy flavor tagging with large charged
particle tracking acceptance. To realize these goals, in 2001 CDF installed
eight layers of silicon microstrip detectors around its interaction region.
These detectors were designed for 2--5 years of operation, radiation doses up
to 2 Mrad (0.02 Gy), and were expected to be replaced in 2004. The sensors were
not replaced, and the Tevatron run was extended for several years beyond its
design, exposing the sensors and electronics to much higher radiation doses
than anticipated. In this paper we describe the operational challenges
encountered over the past 10 years of running the CDF silicon detectors, the
preventive measures undertaken, and the improvements made along the way to
ensure their optimal performance for collecting high quality physics data. In
addition, we describe the quantities and methods used to monitor radiation
damage in the sensors for optimal performance and summarize the detector
performance quantities important to CDF's physics program, including vertex
resolution, heavy flavor tagging, and silicon vertex trigger performance.Comment: Preprint accepted for publication in Nuclear Instruments and Methods
A (07/31/2013
Extracellular vesicles and pancreatic cancer: Insights on the roles of mirna, lncrna, and protein cargos in cancer progression
Pancreatic cancer (PC) is among the most devastating digestive tract cancers worldwide. This cancer is characterized by poor diagnostic detection, lack of therapy, and difficulty in predicting tumorigenesis progression. Although mutations of key oncogenes and oncosuppressor involved in tumor growth and in immunosurveillance escape are known, the underlying mechanisms that orchestrate PC initiation and progression are poorly understood or still under debate. In recent years, the attention of many researchers has been concentrated on the role of extracellular vesicles and of a particular subset of extracellular vesicles, known as exosomes. Literature data report that these nanovesicles are able to deliver their cargos to recipient cells playing key roles in the pathogenesis and progression of many pancreatic precancerous conditions. In this review, we have summarized and discussed principal cargos of extracellular vesicles characterized in PC, such as miRNAs, lncRNAs, and several proteins, to offer a systematic overview of their function in PC progression. The study of extracellular vesicles is allowing to understand that investigation of their secretion and analysis of their content might represent a new and potential diagnostic and prognostic tools for PC
Recommended from our members
Long-term operation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating high salinity low loaded municipal wastewater in real environment
Supplementary material is available online at https://www.sciencedirect.com/science/article/pii/S1383586619335427?via%3Dihub#s0095 .Long term operation of an anaerobic membrane bioreactor (AnMBR) treating municipal wastewater was investigated in a real seawater intrusion spot in Falconara Marittima (Central Italy) on the Adriatic coastline. Changes in biological conversion and system stability were determined with respect to varying organic loading rate (OLR) and high salinity conditions. At an OLR of 1 kg COD m3−1 d−1, biogas production was around 0.39 ± 0.2 L d−1. The increase of the OLR to 2 kg COD m3−1 d−1 resulted in increase of biogas production to 2.8 ± 1.5 L d−1 (with 33.6% ± 10.5% of CH4) with methanol addition and to 4.11 ± 3.1 L d−1 (with 29.7% ± 11.8% of CH4) with fermented cellulosic sludge addition. COD removal by the AnMBR was 83% ± 1% when the effluent COD concentration was below 100 mg O2 L−1. The addition of the fermented sludge affected the membrane operation and significant fouling occurred after long-term filtration, where the trans-membrane pressure (TMP) reached up to 500 mbar. Citric acid solution was applied to remove scalants and the TMP reached the initial value. High saline conditions of 1500 mgCl− L−1 adversely affected the biogas production without deteriorating the membrane operation. The treated effluent met the EU quality standards of the D.M. 185/2003 and the new European Commission Resolution for reuse in agriculture.This study was carried out within the framework of the “SMART-Plant” Innovation Action which has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 690323. This study was carried out within “Safe and Sustainable Solutions for the Integrated Use of Non-Conventional Water Resources in the Mediterranean Agricultural Sector (FIT4REUSE)” which has received funding from the Partnership on Research and Innovation in the Mediterranean Area (PRIMA) under grant agreement No 1823
Validation of Androgen Receptor loss as a risk factor for the development of brain metastases from ovarian cancers
Abstract Background Central nervous system (CNS) spreading from epithelial ovarian carcinoma (EOC) is an uncommon but increasing phenomenon. We previously reported in a small series of 11 patients a correlation between Androgen Receptor (AR) loss and localization to CNS. Aims of this study were: to confirm a predictive role of AR loss in an independent validation cohort; to evaluate if AR status impacts on EOC survival. Results We collected an additional 29 cases and 19 controls as validation cohort. In this independent cohort at univariate analysis, cases exhibited lower expression of AR, considered both as continuous (p < 0.001) and as discrete variable (10% cut-off: p < 0.003; Immunoreactive score: p < 0.001). AR negative EOC showed an odds ratio (OR) = 8.33 for CNS dissemination compared with AR positive EOC. Kaplan-Meier curves of the combined dataset, combining data of new validation cohort with the previously published cohort, showed that AR < 10% significantly correlates with worse outcomes (p = 0.005 for Progression Free Survival (PFS) and p = 0.002 for brain PFS (bPFS) respectively). Comparison of AR expression between primary tissue and paired brain metastases in the combined dataset did not show any statistically significant difference. Conclusions We confirmed AR loss as predictive role for CNS involvement from EOC in an independent cohort of cases and controls. Early assessment of AR status could improve clinical management and patients’ prognosis
Evidence for t\bar{t}\gamma Production and Measurement of \sigma_t\bar{t}\gamma / \sigma_t\bar{t}
Using data corresponding to 6.0/fb of ppbar collisions at sqrt(s) = 1.96 TeV
collected by the CDF II detector, we present a cross section measurement of
top-quark pair production with an additional radiated photon. The events are
selected by looking for a lepton, a photon, significant transverse momentum
imbalance, large total transverse energy, and three or more jets, with at least
one identified as containing a b quark. The ttbar+photon sample requires the
photon to have 10 GeV or more of transverse energy, and to be in the central
region. Using an event selection optimized for the ttbar+photon candidate
sample we measure the production cross section of, and the ratio of cross
sections of the two samples. Control samples in the dilepton+photon and
lepton+photon+\met, channels are constructed to aid in decay product
identification and background measurements. We observe 30 ttbar+photon
candidate events compared to the standard model expectation of 26.9 +/- 3.4
events. We measure the ttbar+photon cross section to be 0.18+0.08 pb, and the
ratio of the cross section of ttbar+photon to ttbar to be 0.024 +/- 0.009.
Assuming no ttbar+photon production, we observe a probability of 0.0015 of the
background events alone producing 30 events or more, corresponding to 3.0
standard deviations.Comment: 9 pages, 3 figure
A search for resonant production of pairs in $4.8\ \rm{fb}^{-1}p\bar{p}\sqrt{s}=1.96\ \rm{TeV}$
We search for resonant production of tt pairs in 4.8 fb^{-1} integrated
luminosity of ppbar collision data at sqrt{s}=1.96 TeV in the lepton+jets decay
channel, where one top quark decays leptonically and the other hadronically. A
matrix element reconstruction technique is used; for each event a probability
density function (pdf) of the ttbar candidate invariant mass is sampled. These
pdfs are used to construct a likelihood function, whereby the cross section for
resonant ttbar production is estimated, given a hypothetical resonance mass and
width. The data indicate no evidence of resonant production of ttbar pairs. A
benchmark model of leptophobic Z \rightarrow ttbar is excluded with m_{Z'} <
900 GeV at 95% confidence level.Comment: accepted for publication in Physical Review D Sep 21, 201
Precision Top-Quark Mass Measurements at CDF
We present a precision measurement of the top-quark mass using the full
sample of Tevatron TeV proton-antiproton collisions collected
by the CDF II detector, corresponding to an integrated luminosity of 8.7
. Using a sample of candidate events decaying into the
lepton+jets channel, we obtain distributions of the top-quark masses and the
invariant mass of two jets from the boson decays from data. We then compare
these distributions to templates derived from signal and background samples to
extract the top-quark mass and the energy scale of the calorimeter jets with
{\it in situ} calibration. The likelihood fit of the templates from signal and
background events to the data yields the single most-precise measurement of the
top-quark mass, \mtop = 172.85 \pm\pmComment: submitted to Phys. Rev. Let
- …