81 research outputs found
Recommended from our members
Phase-matched multi-layer based polarisation-independent spot-size converter for silicon nanowire
The efficient coupling of optical power from a silicon nanowire (NW) to an optical fibre is challenging for both the quasi-TE and quasi-TM polarisations. Here, we propose a polarisation-independent spot-size converter (PI-SSC) based on phase-matched multi-layer waveguides for efficient coupling between a silicon NW and an optical fibre for both the polarisations. The fabrication process of the proposed PI-SSC is compatible with the complementary metal-oxide-semiconductor (CMOS) process. The optimisation for the proposed PI-SSC is studied by using a numerically efficient algorithm, combining a rigorous H-field based full-vectorial finite element method (VFEM) and the least squares boundary residual (LSBR) method. The simulation results show that using an eleven-layer based PI-SSC, the coupling losses between a silicon NW and a lensed fibre of radius 2 μm can be reduced to only 0.34 dB and 0.25 dB for the quasi-TE and quasi-TM polarisations, respectively. Furthermore, the output multi-layer is horizontally tapered, which further reduces the coupling loss for both the polarisations and the end face is easy to be polished
Recommended from our members
In-situ 3D Micro-sensor Model using Embedded Plasmonic Island for Biosensors
The design of the microsensor system for biosensors using the plasmonic island is proposed. The sensor head is formed by the stacked layers of silicon-graphene-gold materials. The dual-mode operations of the sensor can be performed using the relationship of the changes between the electron mobility and optical phase, where the exciting environment can be light intensity (phase), electrical transient, heat, pressure, flavour and smoke, The change in light phase (intensity) in silicon and conductivity (mobility) in gold layers cause change in the output measurands. The design and simulation interpretation of the sensor is presented. The sensor manipulation using the MCM arrangement is simulated and interpreted for biosensor applications 3D imaging can also be applied to the MCM function, where the 3D in situ sensor function is possible. The sensor sensitivity of 2.0 × 10−21 cm2 V−1 s−1 (mW)−1 via simulation is obtained
The burden of physical activity on type 2 diabetes public healthcare expenditures among adults: a retrospective study
<p>Abstract</p> <p>Background</p> <p>Determinants of public healthcare expenditures in type 2 diabetics are not well investigated in developing nations and, therefore, it is not clear if higher physical activity decreases healthcare costs. The purpose of this study was to analyze the relationship between physical activity and the expenditures in public healthcare on type 2 diabetes mellitus treatment.</p> <p>Methods</p> <p>Cross-sectional study carried out in Brazil. A total of 121 type 2 diabetics attended to in two Basic Healthcare Units were evaluated. Public healthcare expenditures in the last year were estimated using a specific standard table. Also evaluated were: socio-demographic variables; chronological age; exogenous insulin use; smoking habits; fasting glucose test; diabetic neuropathy and anthropometric measures. Habitual physical activity was assessed by questionnaire.</p> <p>Results</p> <p>Age (r = 0.20; p = 0.023), body mass index (r = 0.33; p = 0.001) and waist-to-hip ratio (r = 0.20; p = 0.025) were positively related to expenditures on medication for the treatment of diseases other than diabetes. Insulin use was associated with increased expenditures. Higher physical activity was associated with lower expenditure, provided medication for treatment of diseases other than diabetes (OR = 0.19; p = 0.007) and medical consultations (OR = 0.26; p = 0.029).</p> <p>Conclusions</p> <p>Type 2 diabetics with higher enrollment in physical activity presented consistently lower healthcare expenditures for the public healthcare system.</p
A survey on worries of pregnant women - testing the German version of the Cambridge Worry Scale
Background: Pregnancy is a transition period in a woman's life characterized by increased worries and anxiety. The Cambridge Worry Scale (CWS) was developed to assess the content and extent of maternal worries in pregnancy. It has been increasingly used in studies over recent years. However, a German version has not yet been developed and validated. The aim of this study was (1) to assess the extent and content of worries in pregnancy on a sample of women in Germany using a translated and adapted version of the Cambridge Worry Scale, and (2) to evaluate the psychometric properties of the German version. Methods: We conducted a cross-sectional study and enrolled 344 pregnant women in the federal state of Baden-Wurttemberg, Germany. Women filled out structured questionnaires that contained the CWS, the Spielberger-State-Trait-Anxiety Inventory (STAI), as well as questions on their obstetric history. Antenatal records were also analyzed. Results: The CWS was well understood and easy to fill in. The major worries referred to the process of giving birth (CWS mean value 2.26) and the possibility that something might be wrong with the baby (1.99), followed by coping with the new baby (1.57), going to hospital (1.29) and the possibility of going into labour too early (1.28). The internal consistency of the scale (0.80) was satisfactory, and we found a four-factor structure, similar to previous studies. Tests of convergent validity showed that the German CWS represents a different construct compared with state and trait anxiety but has the desired overlap. Conclusions: The German CWS has satisfactory psychometric properties. It represents a valuable tool for use in scientific studies and is likely to be useful also to clinicians
Hardanger / C.A. Soderman
couple in Norwegian costume, woman wearing crownhttps://digitalcommons.risd.edu/picturecollection_costumepostcards/1291/thumbnail.jp
- …