2,540 research outputs found

    The Dendritic magnetic avalanches in carbon-free MgB2_2 thin films with and without a deposited Au layer

    Full text link
    From the magneto optics images (MOI), the dendritic magnetic avalanche is known to appear dominantly for thin films of the newly discovered MgB2_2. To clarify the origin of this phenomenon, we studied in detail the MOI of carbon-free MgB2_2 thin films with and without a deposited gold layer. The MOI indicated carbon contamination was not the main source of the avalanche. The MOI clearly showed that the deposition of metallic gold deposition on top of a MgB2_2 thin film improved its thermal stability and suppressed the sudden appearance of the dendritic flux avalanche. This is consistent with the previous observation of flux noise in the magnetization.Comment: 9 pages, 4 figeure

    Anomalous microwave conductivity coherence peak in c-axis MgB2 thin film

    Get PDF
    The temperature dependence of the real part of the microwave complex conductivity at 17.9 GHz obtained from surface impedance measurements of two c-axis oriented MgB2 thin films reveals a pronounced maximum at a temperature around 0.6 times the critical temperature. Calculations in the frame of a two-band model based on Bardeen-Cooper-Schrieffer (BCS) theory suggest that this maximum corresponds to an anomalous coherence peak resembling the two-gap nature of MgB2. Our model assumes there is no interband impurity scattering and a weak interband pairing interaction, as suggested by bandstructure calculations. In addition, the observation of a coherence peak indicates that the pi-band is in the dirty limit and dominates the total conductivity of our filmsComment: 10 pages, 4 figures, to be published in Phys. Rev. Let

    Infrared and Radio observations of a small group of protostellar objects in the molecular core, L1251-C

    Full text link
    We present a multi-wavelength observational study of a low-mass star-forming region, L1251-C, with observational results at wavelengths from the near-infrared to the millimeter. Spitzer Space Telescope observations confirmed that IRAS 22343+7501 is a small group of protostellar objects. The extended emission to east-west direction with its intensity peak at the center of L1251A has been detected at 350 and 850 micron with the CSO and JCMT telescopes, tracing dense envelope materials around L1251A. The single-dish data from the KVN and TRAO telescopes show inconsistencies between the intensity peaks of several molecular line emission and that of the continuum emission, suggesting complex distributions of molecular abundances around L1251A. The SMA interferometer data, however, show intensity peaks of CO 2-1 and 13CO 2-1 located at the position of IRS 1, which is both the brightest source in IRAC image and the weakest source in the 1.3 mm dust continuum map. IRS 1 is the strongest candidate for the driving source of the newly detected compact CO 2-1 outflow. Over the whole region (14' by 14') of L125l-C, 3 Class I and 16 Class II sources have been detected, including three YSOs in L1251A. A comparison with the average projected distance among 19 YSOs in L1251-C and that among 3 YSOs in L1251A suggests L1251-C is an example of low-mass cluster formation, where protostellar objects are forming in a small group.Comment: 53 pages, 19 figures, accepted for publication in ApJ
    • …
    corecore