29 research outputs found

    Tutorial review for peptide assays: An ounce of pre-analytics is worth a pound of cure.

    Get PDF
    The recent increase in peptidomimetic-based medications and the growing interest in peptide hormones has brought new attention to the quantification of peptides for diagnostic purposes. Indeed, the circulating concentrations of peptide hormones in the blood provide a snapshot of the state of the body and could eventually lead to detecting a particular health condition. Although extremely useful, the quantification of such molecules, preferably by liquid chromatography coupled to mass spectrometry, might be quite tricky. First, peptides are subjected to hydrolysis, oxidation, and other post-translational modifications, and, most importantly, they are substrates of specific and nonspecific proteases in biological matrixes. All these events might continue after sampling, changing the peptide hormone concentrations. Second, because they include positively and negatively charged groups and hydrophilic and hydrophobic residues, they interact with their environment; these interactions might lead to a local change in the measured concentrations. A phenomenon such as nonspecific adsorption to lab glassware or materials has often a tremendous effect on the concentration and needs to be controlled with particular care. Finally, the circulating levels of peptides might be low (pico- or femtomolar range), increasing the impact of the aforementioned effects and inducing the need for highly sensitive instruments and well-optimized methods. Thus, despite the extreme diversity of these peptides and their matrixes, there is a common challenge for all the assays: the need to keep concentrations unchanged from sampling to analysis. While significant efforts are often placed on optimizing the analysis, few studies consider in depth the impact of pre-analytical steps on the results. By working through practical examples, this solution-oriented tutorial review addresses typical pre-analytical challenges encountered during the development of a peptide assay from the standpoint of a clinical laboratory. We provide tips and tricks to avoid pitfalls as well as strategies to guide all new developments. Our ultimate goal is to increase pre-analytical awareness to ensure that newly developed peptide assays produce robust and accurate results

    Stabilization of urinary biogenic amines measured in clinical chemistry laboratories.

    Get PDF
    Urinary 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic (VMA), homovanillic acid (HVA), catecholamines and metanephrines are produced in excess by catecholamine-producing tumors. These biogenic amines are unstable at low or high pH and require hydrochloric acid (HCl) to prevent their degradation. However, HCl addition may result in very low pH causing degradation or deconjugation of several metabolites. This study evaluated the buffering properties of sodium citrate to stabilize all biogenic amines. The metabolite concentrations were measured by LC-MS/MS or by a coulometric assay in 22 urine samples collected native and with HCl or sodium citrate. We studied the effect of pH, time (48 h, four weeks) and storage temperature at 22 °C, 4 °C, and -20 °C. We found that catecholamines degradation was prevented by HCl and citrate and that 5-HIAA was degraded in 5 out of 22 samples collected with HCl. All biogenic amines were efficiently stabilized by citrate for four weeks at 22 °C, except epinephrine (48 h at 4 °C, or four weeks at -20 °C). Sodium citrate did not cause quantification or analytical artefacts concerns. In conclusion, sodium citrate is a non-hazardous alternative to HCl for patients to send unfrozen urine samples to the laboratory which may safely store the sample for four weeks

    Brain fog in neuropathic postural tachycardia syndrome may be associated with autonomic hyperarousal and improves after water drinking.

    Get PDF
    Brain fog is a common and highly disturbing symptom for patients with neuropathic postural tachycardia syndrome (POTS). Cognitive deficits have been measured exclusively in the upright body position and mainly comprised impairments of higher cognitive functions. The cause of brain fog is still unclear today. This study aimed to investigate whether increased autonomic activation might be an underlying mechanism for the occurrence of brain fog in neuropathic POTS. We therefore investigated cognitive function in patients with neuropathic POTS and a healthy control group depending on body position and in relation to catecholamine release as a sensitive indicator of acute stress. The second aim was to test the effect of water intake on cardiovascular regulation, orthostatic symptoms, cognitive function and catecholamine release. Thirteen patients with neuropathic POTS and 15 healthy control subjects were included. All participants completed a total of four rounds of cognitive testing: two before and two after the intake of 500 ml still water, each first in the supine position and then during head-up tilt. At the end of each cognitive test, a blood sample was collected for determination of plasma catecholamines. After each head-up tilt phase participants were asked to rate their current symptoms on a visual analogue scale. Working memory performance in the upright body position was impaired in patients, which was associated with self-reported symptom severity. Patients had elevated plasma norepinephrine independent of body position and water intake that increased excessively in the upright body position. The excessive increase of plasma norepinephrine was related to heart rate and symptom severity. Water intake in patients decreased norepinephrine concentrations and heart rate, and improved symptoms as well as cognitive performance. Brain fog and symptom severity in neuropathic POTS are paralleled by an excessive norepinephrine secretion. Bolus water drinking down-regulates norepinephrine secretion and improves general symptom severity including brain fog

    Quantification of endogenous Angiotensin 1-10, 1-9, 1-8, 1-7, and 1-5 in human plasma using micro-UHPLC-MS/MS: Outlining the importance of the pre-analytics for reliable results.

    Get PDF
    Angiotensin peptides (ANGs) play a central role in the renin-angiotensin-aldosterone system, rendering them interesting biomarkers associated with hypertension. Precise quantification of circulating ANGs holds the potential to assess the activity of angiotensin-converting enzyme (ACE), a key protease targeted by widely prescribed drugs, namely ACE inhibitors. This ability could pave the way for personalised medicine, offering insights into the prescription of inhibitors targeting either the proteases or the receptors within the system. Despite recent developments in liquid chromatography-mass spectrometry (LC-MS) methods for measuring circulating ANG concentrations, comprehensive stability studies of ANGs in human plasma are absent in the literature, raising concerns about the reliability of measured concentrations and their link to clinical conditions. To address this critical gap, we conducted an exhaustive evaluation of the pre-analytical stability of ANG1-10, ANG1-9, ANG1-8, ANG1-7, and ANG1-5. By employing surfactants to mitigate non-specific adsorption and a dedicated mix of protease inhibitors to limit protease activity, we established an MS-based assay for these five peptides. We used this method to quantify circulating concentrations of ANGs in the plasma of 11 healthy donors and 3 patients under kidney dialysis. Our findings revealed that ANG1-10 and ANG1-8 circulate at concentrations ranging from 1 to 10 pM in healthy subjects and exhibit a high degree of correlation. Notably, ANG1-9, ANG1-7, and ANG1-5 were undetectable in any of the 14 patients, despite a sub-picomolar limit of detection. This strikingly contrasts with the reference concentrations reported in the literature, which typically fall within the picomolar range. In light of these discrepancies, we strongly advocate for rigorous pre-analytical considerations and comprehensive stability studies to ensure reliable results. We emphasise the pivotal role of heightened pre-analytical awareness within the clinical chemistry community, and we hope for continued growth in this critical area

    Kinetics of neuropeptide Y, catecholamines, and physiological responses during moderate and heavy intensity exercises.

    Get PDF
    Neuropeptide Y 1-36 (NPY1-36) is a vasoconstrictor peptide co-secreted with norepinephrine (NE) by nerve endings during sympathetic activation. NPY1-36 potentiates NE action post-synaptically through the stimulation of the Y1 receptor, whereas its metabolite NPY3-36 resulting from DPP4 action activates Y2 presynaptic receptors, inhibiting NE and acetylcholine secretion. The secretions of NPY1-36 and NPY3-36 in response to sympathetic nervous system activation have not been studied due to the lack of analytical techniques available to distinguish them. We determined in healthy volunteers NPY1-36, NPY3-36 and catecholamine kinetics and how these neurotransmitters modulate the physiological stress response during and after moderate- and heavy-intensity exercises. Six healthy males participated in this randomized, double-blind, saxagliptin vs placebo crossover study. The volunteers performed an orthostatic test, a 30-min exercise at moderate intensity and a 15-min exercise at heavy intensity each followed by 50 min of recovery in two separate sessions with saxagliptin or placebo. Oxygen consumption (V̇O <sub>2</sub> ), ventilation and heart rate were continuously recorded. NE, epinephrine, NPY1-36 and NPY3-36 were quantified by tandem mass spectrometry. We found that exercise triggers NPY1-36 and NE secretion in an intensity-dependent manner and that NE returns faster to the baseline concentration than NPY1-36 after exercise. NPY3-36 rises during recovery parallel to the decline of NPY1-36. Saxagliptin reverses the NPY1-36/NPY3-36 ratio but does not affect hemodynamics, nor NPY1-36 and catecholamine concentrations. We found that NPY1-36 half-life is considerably shorter than previously established with immunoassays. NPY1-36 and NE secretions are finely regulated to prevent an excessive physiological Y1 stimulating response to submaximal exercise

    Quantification of serotonin and eight of its metabolites in plasma of healthy volunteers by mass spectrometry.

    Get PDF
    Serotonin is transformed into melatonin under the control of the light/dark cycle, representing a cornerstone of circadian rhythmicity. Serotonin also undergoes extensive metabolism to produce 5-hydroxyindoleacetic acid (5-HIAA), a biomarker for the diagnosis and monitoring of serotonin secreting neuroendocrine tumors (NETs). While serotonin, melatonin and their metabolites are part of an integrated comprehensive system, human observations about their respective plasma concentrations are still limited. We report here for the first time a multiplex UHPLC-MS/MS assay for the quantification of serotonin, 5-HIAA, 5-hydroxytryptophol (5-HTPL), N-acetyl-serotonin (NAS), Mel, 6-OH-Mel, 5-methoxytryptamine (5-MT), 5-methoxytryptophol (5-MTPL), and 5-methoxyindoleacetic acid (5-MIAA) in human plasma. Analytes were extracted by protein precipitation and solid phase extraction. Plasma concentrations for these analytes were determined in 102 healthy volunteers. The LLOQ of the assay ranges from 2.2 nM for serotonin to 1.0 pM for 6-OH-Mel. This sensitivity enables the quantification of circulating serotonin, 5-HIAA, NAS, Mel, and 5-MIAA, even at their lowest diurnal concentrations. This assay will enable specific, precise and accurate measurement of serotonin, Mel and their metabolites to draw a detailed picture of this complex pineal metabolism, allowing a dynamic understanding of these pathways and providing promising biomarkers and a metabolic signature for serotonin-secreting NETs

    Low number of neurosecretory vesicles in neuroblastoma impairs massive catecholamine release and prevents hypertension.

    Get PDF
    Neuroblastoma (NB) is a pediatric cancer of the developing sympathetic nervous system. It produces and releases metanephrines, which are used as biomarkers for diagnosis in plasma and urine. However, plasma catecholamine concentrations remain generally normal in children with NB. Thus, unlike pheochromocytoma and paraganglioma (PHEO/PGL), two other non-epithelial neuroendocrine tumors, hypertension is not part of the usual clinical picture of patients with NB. This suggests that the mode of production and secretion of catecholamines and metanephrines in NB is different from that in PHEO/PGL, but little is known about these discrepancies. Here we aim to provide a detailed comparison of the biosynthesis, metabolism and storage of catecholamines and metanephrines between patients with NB and PHEO. Catecholamines and metanephrines were quantified in NB and PHEO/PGL patients from plasma and tumor tissues by ultra-high pressure liquid chromatography tandem mass spectrometry. Electron microscopy was used to quantify neurosecretory vesicles within cells derived from PHEO tumor biopsies, NB-PDX and NB cell lines. Chromaffin markers were detected by qPCR, IHC and/or immunoblotting. Plasma levels of metanephrines were comparable between NB and PHEO patients, while catecholamines were 3.5-fold lower in NB vs PHEO affected individuals. However, we observed that intratumoral concentrations of metanephrines and catecholamines measured in NB were several orders of magnitude lower than in PHEO. Cellular and molecular analyses revealed that NB cell lines, primary cells dissociated from human tumor biopsies as well as cells from patient-derived xenograft tumors (NB-PDX) stored a very low amount of intracellular catecholamines, and contained only rare neurosecretory vesicles relative to PHEO cells. In addition, primary NB expressed reduced levels of numerous chromaffin markers, as compared to PHEO/PGL, except catechol O-methyltransferase and monoamine oxidase A. Furthermore, functional assays through induction of chromaffin differentiation of the IMR32 NB cell line with Bt2cAMP led to an increase of neurosecretory vesicles able to secrete catecholamines after KCl or nicotine stimulation. The low amount of neurosecretory vesicles in NB cytoplasm prevents catecholamine storage and lead to their rapid transformation by catechol O-methyltransferase into metanephrines that diffuse in blood. Hence, in contrast to PHEO/PGL, catecholamines are not secreted massively in the blood, which explains why systemic hypertension is not observed in most patients with NB

    LC-MS/MS Peptide Assay Validation: A Plea for Robust Stability Studies.

    No full text

    Quantification of vanillylmandelic acid, homovanillic acid and 5-hydroxyindoleacetic acid in urine using a dilute-and-shoot and ultra-high pressure liquid chromatography tandem mass spectrometry method.

    No full text
    Urinary vanillylmandelic acid (VMA) and homovanillic acid (HVA) are biomarkers for the diagnosis and follow-up of neuroblastoma, whereas urinary 5-hydroxyindoleacetic acid (5-HIAA) is used to assess a carcinoid tumor. These analytes are conventionally analyzed in a single run by chromatography (LC) coupled with electrochemical detection (LC-ECD) using commercial kits. A rapid dilute-and-shoot LC tandem mass spectrometry (LC-MS/MS) assay was validated in order to replace the LC-ECD method and therefore improve analytical specificity and throughput. Sample preparation was carried out by dilution of the urine sample with a solution containing the deuterated internal standards. The separation was achieved on an ultra-high pressure LC system with MS detection using a triple quadrupole mass spectrometer. The method was validated according to the current EMA and FDA guidelines. The full chromatographic run was achieved in 8 min. The method validation showed excellent linearity (r2>0.999 for all three analytes), precision (CV <15%), negligible matrix effect (recoveries >90%), low carryover (<1%) and LLOQ of 0.25, 0.4 and 0.4 μM for VMA, HVA and 5-HIAA, respectively. Deming fits and Bland-Altman analyses showed no significant differences between the values obtained between the two assays. The LC-MS/MS method proposed in this study is fast and robust, and the simple sample preparation saves time and avoids the additional costs of dedicated kits used for the LC-ECD assays by switching to LC-MS/MS. Additionally, the near-perfect correlation observed herein between both assays allows the previously established reference ranges to be maintained
    corecore