6 research outputs found

    Manufacturing Technology on a Mechatronics Line Assisted by Autonomous Robotic Systems, Robotic Manipulators and Visual Servoing Systems

    No full text
    This paper proposes the implementation of an assisting technology to a processing/reprocessing mechatronics line (P/RML), comprising the following: two autonomous robotic systems (ARSs), two robotic manipulators (RMs) and three visual servoing systems (VSSs). The P/RML has four line-shaped workstations assisted by two ARSs—wheeled mobile robots (WMRs): one of them equipped with an RM, used for manipulation, and the other one used for transport. Two types of VSSs—eye to hand and eye in hand—are used as actuators for precise positioning of RMs to catch and release the work-piece. The work-piece visits stations successively as it is moved along the line for processing. If the processed piece does not pass the quality test, it is taken from the last stations of the P/RML and it is transported to the first station where it will be considered for reprocessing. The P/RML, assisted by ARSs, RMs and VSSs, was modelled with the synchronized hybrid Petri nets (SHPN). To control the ARSs, we propose the use of trajectory-tracking and sliding-mode control (TTSMC). The precise positioning that allows the picking up and releasing of the work-piece was performed using two types of VSSs. In the case of the first one, termed eye to hand VSS, the cameras have a fixed position, located at the last and the first workstations of the P/RML. For the second one, named eye in hand VSS, the camera is located at the end effector of the RM

    Modelling and Control of Mechatronics Lines Served by Complex Autonomous Systems

    No full text
    The aim of this paper is to reverse an assembly line, to be able to perform disassembly, using two complex autonomous systems (CASs). The disassembly is functioning only in case of quality default identified in the final product. The CASs are wheeled mobile robots (WMRs) equipped with robotic manipulators (RMs), working in parallel or collaboratively. The reversible assembly/disassembly mechatronics line (A/DML) assisted by CASs has a specific typology and is modelled by specialized hybrid instruments belonging to the Petri nets class, precisely synchronized hybrid Petri nets (SHPN). The need of this type of models is justified by the necessity of collaboration between the A/DML and CASs, both having characteristics and physical constraints that should be considered and to make all systems compatible. Firstly, the paper proposes the planning and scheduling of tasks necessary in modelling stage as well as in real time control. Secondly, two different approaches are proposed, related to CASs collaboration: a parallel approach with two CASs have simultaneous actions: one is equipped with robotic manipulator, used for manipulation, and the other is used for transporting. This approach is correlated with industrial A/D manufacturing lines where have to transport and handle weights in a wide range of variation. The other is a collaborative approach, A/DML is served by two CASs used for manipulation and transporting, both having simultaneous movements, following their own trajectories. One will assist the disassembly in even, while the other in odd workstations. The added value of this second approach consists in the optimization of a complete disassembly cycle. Thirdly, it is proposed in the paper the real time control of mechatronics line served by CASs working in parallel, based on the SHPN model. The novelty of the control procedure consists in the use of the synchronization signals, in absence of the visual servoing systems, for a precise positioning of the CASs serving the reversible mechatronics line

    Multifunctional Technology of Flexible Manufacturing on a Mechatronics Line with IRM and CAS, Ready for Industry 4.0

    No full text
    A communication and control architecture of a multifunctional technology for flexible manufacturing on an assembly, disassembly, and repair mechatronics line (A/D/RML), assisted by a complex autonomous system (CAS), is presented in the paper. A/D/RML consists of a six-work station (WS) mechatronics line (ML) connected to a flexible cell (FC) equipped with a six-degree of freedom (DOF) industrial robotic manipulator (IRM). The CAS has in its structure two driving wheels and one free wheel (2 DW/1 FW)-wheeled mobile robot (WMR) equipped with a 7-DOF robotic manipulator (RM). On the end effector of the RM, a mobile visual servoing system (eye-in-hand VSS) is mounted. The multifunctionality is provided by the three actions, assembly, disassembly, and repair, while the flexibility is due to the assembly of different products. After disassembly or repair, CAS picks up the disassembled components and transports them to the appropriate storage depots for reuse. Technology operates synchronously with signals from sensors and eye-in-hand VSS. Disassembling or repairing starts after assembling and the final assembled product fails the quality test. Due to the diversity of communication and control equipment such as PLCs, robots, sensors or actuators, the presented technology, although it works on a laboratory structure, has applications in the real world and meets the specific requirements of Industry 4.0

    Mobile Visual Servoing Based Control of a Complex Autonomous System Assisting a Manufacturing Technology on a Mechatronics Line

    No full text
    The main contribution of this paper is the modeling and control for a complex autonomous system (CAS). It is equipped with a visual sensor to operate precision positioning in a technology executed on a laboratory mechatronics line. The technology allows the retrieval of workpieces which do not completely pass the quality test. Another objective of this paper is the implementation of an assisting technology for a laboratory processing/reprocessing mechatronics line (P/RML) containing four workstations, assisted by the following components: a complex autonomous system that consists of an autonomous robotic system (ARS), a wheeled mobile robot (WMR) PeopleBot, a robotic manipulator (RM) Cyton 1500 with seven degrees of freedom (7 DOF), and a mobile visual servoing system (MVS) with a Logitech camera as visual sensor used in the process of picking, transporting and placing the workpieces. The purpose of the MVS is to increase the precision of the RM by utilizing the look and move principle, since the initial and final positions of the CAS can slightly deviate from their trajectory, thus increasing the possibility of errors to appear during the process of catching and releasing the pieces. If the processed piece did not pass the quality test and has been rendered as defective, it is retrieved from the last station of the P/RML and transported to the first station for reprocessing. The control of the WMR is done using the trajectory-tracking sliding-mode control (TTSMC). The RM control is based on inverse kinematics model, and the MVS control is implemented with the image moments method

    Communication and Control of an Assembly, Disassembly and Repair Flexible Manufacturing Technology on a Mechatronics Line Assisted by an Autonomous Robotic System

    No full text
    This paper aims to describe modeling and control in what concerns advanced manufacturing technology running on a flexible assembly, disassembly and repair on a mechatronic line (A/D/RML) assisted by an Autonomous Robotic System (ARS), two robotic manipulators (RM) and visual servoing system (VSS). The A/D/RML consists of a six workstations (WS) mechatronics line (ML) connected to a flexible cell (FC) equipped with a 6-DOF ABB industrial robotic manipulator (IRM) and an ARS used for manipulation and transport. A hybrid communication and control based on programmable logic controller (PLC) architecture is used, which consists of two interconnected systems that feature both distributed and centralized topology, with specific tasks for all the manufacturing stages. Profinet communication link is used to interconnect and control FC and A/D/RML. The paper also discusses how to synchronize data between different field equipment used in the industry and the control systems. Synchronization signals between the master PLC and ARS is performed by means of Modbus TCP protocol and OPC UA. The structure of the ARS consists of a wheeled mobile robot (WMR) with two driving wheels and one free wheel (2DW/1FW) equipped with a 7-DOF RM. Trajectory tracking sliding-mode control (TTSMC) is used to control WMR. The end effector of the ARS RM is equipped with a mobile eye-in-hand VSS technology for the precise positioning of RM to pick and place the workparts in the desired location. Technology operates synchronously with signals from sensors and from the VSS HD camera. If the workpiece does not pass the quality test, the process handles it by transporting back from the end storage unit to the flexible cell where it will be considered for reprocessing, repair or disassembling with the recovery of the dismantled parts. The recovered or replaced components are taken over by the ARS from disassembling location and transported back to the dedicated storage warehouses to be reused in the further assembly processes

    Digital Twin for a Multifunctional Technology of Flexible Assembly on a Mechatronics Line with Integrated Robotic Systems and Mobile Visual Sensor—Challenges towards Industry 5.0

    No full text
    A digital twin for a multifunctional technology for flexible manufacturing on an assembly, disassembly, and repair mechatronics line (A/D/RML), assisted by a complex autonomous system (CAS), is presented in the paper. The hardware architecture consists of the A/D/RML and a six-workstation (WS) mechatronics line (ML) connected to a flexible cell (FC) and equipped with a six-degree of freedom (DOF) industrial robotic manipulator (IRM). The CAS has in its structure two driving wheels and one free wheel (2DW/1FW)-wheeled mobile robot (WMR) equipped with a 7-DOF robotic manipulator (RM). On the end effector of the RM, a mobile visual servoing system (eye-in-hand MVSS) is mounted. The multifunctionality is provided by the three actions, assembly, disassembly, and repair, while the flexibility is due to the assembly of different products. After disassembly or repair, CAS picks up the disassembled components and transports them to the appropriate storage depots for reuse. Disassembling or repairing starts after assembling, and the final assembled product fails the quality test. The virtual world that serves as the digital counterpart consists of tasks assignment, planning and synchronization of A/D/RML with integrated robotic systems, IRM, and CAS. Additionally, the virtual world includes hybrid modeling with synchronized hybrid Petri nets (SHPN), simulation of the SHPN models, modeling of the MVSS, and simulation of the trajectory-tracking sliding-mode control (TTSMC) of the CAS. The real world, as counterpart of the digital twin, consists of communication, synchronization, and control of A/D/RML and CAS. In addition, the real world includes control of the MVSS, the inverse kinematic control (IKC) of the RM and graphic user interface (GUI) for monitoring and real-time control of the whole system. The “Digital twin” approach has been designed to meet all the requirements and attributes of Industry 4.0 and beyond towards Industry 5.0, the target being a closer collaboration between the human operator and the production line
    corecore