2 research outputs found

    The Morphology and Phenotype of Monocyte-Macrophages When Cultured on Bionanofilms Substrates with Different Surface Relief Profiles

    No full text
    The effect of surface relief profiles of alkanoate-based bionanofilms to the monocyte-macrophages (MN-MPhs) from peripheral blood of patients with atherosclerosis was studied in vitro. Patients were subjected to coronary stenting. Cell morphology and phenotype (expression of CD antigens, levels of production of marker cytokines) in vitro were analyzed before and after the installation of stents. It was shown, that the mean square roughness (Rq) of the bionanofilms determined the variability of cell morphology, CD antigens spectraand activity of production interleukins-6 and -10. Also, it was revealed, that the “activity” of the surface topography of biopolymer substrates depends on the functional state of MNs, isolated in different time points: Before and after stenting the ratios of cell morphotypes and production of cytokines in MN-MPhs differed significantly

    Screening of biopolymeric materials for cardiovascular surgery toxicityβ€”Evaluation of their surface relief with assessment of morphological aspects of monocyte/macrophage polarization in atherosclerosis patients

    No full text
    ВСкст ΡΡ‚Π°Ρ‚ΡŒΠΈ Π½Π΅ публикуСтся Π² ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ доступС Π² соотвСтствии с ΠΏΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΉ ΠΆΡƒΡ€Π½Π°Π»Π°.The morphotypes of human macrophages (MPh) were studied in the culture on nano-structured biopolymer substrates, made from polyhydroxyalcanoates (PHAs) of five various monomer compositions, followed by the solvent evaporation. Its surface relief, which was further in direct contact with human cells in vitro, was analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). It was shown, that the features of the micro/nano relief depend on the monomeric composition of the polymer substrates. Monocytes (MN) of patients with atherosclerosis and cardiac ischemia, undergoing stenting and conventional anti-atherosclerotic therapy, were harvested prior and after stenting. MN were isolated and cultured, with the transformation into MPh in direct contact with biopolymer culture substrates with different monomer composition and nano-reliefs, and transformed into MPh, in comparison with the same process on standard culture plastic. Sub-populations of cells with characteristic morphology in each phenotypic class were described, and their quantitative ratios for each sample of polymers were counted as an intermediate result in the development of β€œsmart” material for cardiovascular devices. The results obtained allow us to assume, that the processes of MPh differentiation and polarization in vitro depend not only on the features of the micro/nano relief of biopolymer substrates, but also on the initial state of MN in vivo and general response of patients
    corecore